分析 (1)利用平行分線段成比例定理即可證明.
(2)分兩種情形討論①如圖1中,若∠CDB=∠CPB,②如圖2中,若∠PCB=∠CDB,分別求解即可.
解答 證明:∵BF∥DE,
∴$\frac{AD}{DB}$=$\frac{AC}{CG}$,
∵AD=BD,
∴AC=CG.
(2)解:當(dāng)PB=5或$\frac{64}{5}$時(shí),△BCP與△BCD相似;
在△ABC和△GBC中:
$\left\{\begin{array}{l}{AC=CG}\\{∠ACB=∠GCB}\\{BC=BC}\end{array}\right.$,
∴△ABC≌△GBC(SAS),
∴AB=BG
∴∠DBC=∠CBP,
∵AC=6,BC=8,
∴AB=10,
∴CD=5,
∵∠DBC=∠CBP,![]()
第一種情況:若∠DCB=∠BCP,如圖1:
在△BCP與△BCD中
∠DCB=∠BCP,
BC=BC,
∠DBC=∠CBP,
∴△BCP≌△BCD(ASA),
∴BP=CD=5;
第二種情況:若∠PCB=∠DCB,如圖2:
∵∠CBD=∠CBP,
∴△BPC∽△BCD,
∴$\frac{BD}{BC}=\frac{BC}{BP}$,
∴BP=$\frac{64}{5}$,
綜上所述:當(dāng)PB=5或$\frac{64}{5}$時(shí),△BCP與△BCD相似.
點(diǎn)評(píng) 此題主要考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、直角三角形斜邊中線定理、平行線分線段成比例定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類討論的思想思考問題,注意不能漏解,屬于中考?碱}型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{a}{2}$ | B. | $\frac{\sqrt{3}}{2}$a | C. | a | D. | $\sqrt{3}$a |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com