分析 (1)如圖1中,作BE⊥AD于E,設(shè)DE=x,BD=y,由△△ABE≌△ABO,推出OA=AE=6,OB=BE=3,根據(jù)勾股定理列出關(guān)于x、y的方程組求出x、y即可解決問(wèn)題.
(2)如圖2中,作BF⊥CD于F,PH⊥CD于H.首先證明△DAQ∽△BAP,再分兩種情形①點(diǎn)Q在點(diǎn)C上方時(shí).②點(diǎn)Q在點(diǎn)C下方時(shí),如圖3中,分別計(jì)算即可.
(3)分兩種情形討論①點(diǎn)Q在點(diǎn)C上方時(shí),如圖4中,根據(jù)PN:DN=1:2,可得$\frac{{5+\frac{3}{2}t}}{{\sqrt{5}}}$:($\sqrt{5}$t+2$\sqrt{5}$)=$\frac{1}{2}$,②點(diǎn)Q在點(diǎn)C下方時(shí),如圖5中,根據(jù)PN:DN=1:2,列出方程即可解決問(wèn)題.
解答 解:(1)如圖1中,作BE⊥AD于E,設(shè)DE=x,BD=y.![]()
在△ABE和△ABO中,
$\left\{\begin{array}{l}{∠AEB=∠AOB=90°}\\{∠EAB=∠BAO}\\{AB=AB}\end{array}\right.$,
∴△△ABE≌△ABO,
∴OA=AE,OB=BE,
∵B(0,3),A(-6,0),
∴AE=AO=6,EB=BO=3,
則有$\left\{\begin{array}{l}{{x}^{2}+{3}^{2}={y}^{2}}\\{{6}^{2}+(3+y)^{2}=(6+x)^{2}}\end{array}\right.$解得$\left\{\begin{array}{l}{x=4}\\{y=5}\end{array}\right.$,
∴DE=4,
∵AD=AC=10,OA=6,
∴OC=4,
∴點(diǎn)C坐標(biāo)為(4,0)
(2)如圖2中,作BF⊥CD于F,PH⊥CD于H.![]()
∵AD=AC,∠FAD=∠FAC,
∴AF⊥CD,
∴∠DFB=∠AOB=90°,
∵∠ABO=∠DBF,
∴∠BDF=∠BAO=∠BAD,
∵∠ABP=∠ADB+∠BAD=∠ADB+∠BDF=∠ADQ,
由(1)可知tan∠DAB=tan∠BAO=$\frac{1}{2}$,∵tan∠PAQ=$\frac{1}{2}$,
∴∠BAD=∠PAQ,
∴∠DAQ=∠BAP,
∴△DAQ∽△BAP
∴$\frac{AD}{AB}=\frac{DQ}{BP}$,
∴DQ=$\sqrt{5}$t
∵DP=5+$\frac{3}{2}$t,tan∠ODC=$\frac{1}{2}$,
∴PH=.$\frac{{5+\frac{3}{2}t}}{{\sqrt{5}}}$,
①點(diǎn)Q在點(diǎn)C上方時(shí).
∴s=$\frac{1}{2}$PH•QC=$\frac{1}{2}$PH(DC-DQ),
∴s=$\frac{1}{2}$×$\frac{{5+\frac{3}{2}t}}{{\sqrt{5}}}$(4$\sqrt{5}$-$\sqrt{5}$t)=$-\frac{3}{4}{t^2}$+$\frac{1}{2}$t+10(0≤t<4).
②點(diǎn)Q在點(diǎn)C下方時(shí),如圖3中,![]()
∴s=$\frac{1}{2}$PH•QC=$\frac{1}{2}$PH(DQ-DC),
∴s=$\frac{1}{2}$×$\frac{{5+\frac{3}{2}t}}{{\sqrt{5}}}$($\sqrt{5}$t-4$\sqrt{5}$)=$\frac{3}{4}{t^2}$-$\frac{1}{2}$t-10(t>4).
(3)∵$\frac{BD}{QN}=\frac{{\sqrt{5}}}{2}$,
∴NQ=2$\sqrt{5}$
∵PQ為直徑,
∴∠PNQ=90°,
又∵tan∠ODC=$\frac{1}{2}$,
∴$\frac{PN}{DN}$=$\frac{1}{2}$
①點(diǎn)Q在點(diǎn)C上方時(shí),如圖4中,![]()
∵PN:DN=1:2
∴$\frac{{5+\frac{3}{2}t}}{{\sqrt{5}}}$:($\sqrt{5}$t+2$\sqrt{5}$)=$\frac{1}{2}$,
∴t=0,
當(dāng)t=0時(shí),D、Q重合,PQ⊥x軸.
②點(diǎn)Q在點(diǎn)C下方時(shí),如圖5中,![]()
∵PN:DN=1:2,
∴$\frac{{5+\frac{3}{2}t}}{{\sqrt{5}}}$:($\sqrt{5}$t-2$\sqrt{5}$)=$\frac{1}{2}$,
∴t=10,
當(dāng)t=10時(shí),DP=20,DQ=10$\sqrt{5}$,
∴$\frac{DO}{DP}$=$\frac{2}{5}$,$\frac{DC}{DQ}$=$\frac{4\sqrt{5}}{10\sqrt{5}}$=$\frac{2}{5}$,
∴$\frac{DO}{DP}$=$\frac{DC}{DQ}$
∴PQ∥x軸.
點(diǎn)評(píng) 本題考查圓綜合題、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是正確尋找相似三角形解決問(wèn)題,學(xué)會(huì)利用方程的思想思考問(wèn)題,學(xué)會(huì)分類討論,注意不能漏解,屬于中考?jí)狠S題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 6,8 | B. | 3,2 | C. | 2,3 | D. | 3,4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3 | B. | 6 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | y=$\frac{4}{5}$x | B. | y=$\frac{4}{5x}$ | C. | y=-x+1 | D. | y=$\frac{1}{2}$(x-3) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 15m | B. | 17m | C. | 18m | D. | 16m |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com