分析 (1)由四邊形ABCD是正方形可得出AB=CB,∠ABC=90°,再由△EBF是等腰直角三角形可得出BE=BF,通過角的計(jì)算可得出∠ABF=∠CBE,利用全等三角形的判定定理SAS即可證出△ABF≌△CBE;
(2)根據(jù)△EBF是等腰直角三角形可得出∠BFE=∠FEB,通過角的計(jì)算可得出∠AFB=135°,再根據(jù)全等三角形的性質(zhì)可得出∠CEB=∠AFB=135°,通過角的計(jì)算即可得出∠CEF=90°,從而得出△CEF是直角三角形,再根據(jù)勾股定理即可證明;
解答 (1)證明:∵四邊形ABCD是正方形,
∴AB=CB,∠ABC=90°,
∵△EBF是等腰直角三角形,其中∠EBF=90°,
∴BE=BF,![]()
∴∠ABC-∠CBF=∠EBF-∠CBF,
∴∠ABF=∠CBE.
在△ABF和△CBE中,
$\left\{\begin{array}{l}{AB=CB}\\{∠ABF=∠CBE}\\{BF=BE}\end{array}\right.$,
∴△ABF≌△CBE(SAS).
(2)解:結(jié)論:FE2=FA2+FC2.理由如下:
∵△EBF是等腰直角三角形,
∴∠BFE=∠FEB=45°,
∴∠AFB=180°-∠BFE=135°,
又∵△ABF≌△CBE,
∴∠CEB=∠AFB=135°,
∴∠CEF=∠CEB-∠FEB=135°-45°=90°,
∴△CEF是直角三角形,
∵FE2=FC2+EC2,
∵△ABF≌△CBE,
∴AF=EC,
∴FE2=FA2+FC2.
故答案為FE2=FA2+FC2.
點(diǎn)評 本題考查了正方形的性質(zhì).全等三角形的判定及性質(zhì)、等腰直角三角形的性質(zhì)以及角的計(jì)算,解題的關(guān)鍵是:(1)根據(jù)判定定理SAS證明△ABF≌△CBE;(2)通過角的計(jì)算得出∠CEF=90°.本題屬于中檔題,難度不大,解決該題型題目時(shí),通過正方形和等腰三角形的性質(zhì)找出相等的邊,再通過角的計(jì)算找出相等的角,以此來證明兩三角形全等是關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x>-3 | B. | x<-3 | C. | x>2 | D. | x<2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com