分析 (1)先判斷出∠CAD=∠DBE,再利用等腰直角三角形求出∠ABD=45°,進而求出∠CBD,最后用鄰補角即可得出結(jié)論;
(2)①根據(jù)題意及基本作圖即可補全圖形;
②想法1,構(gòu)造出△ACD≌△BED,進而判斷出△CDE是等腰直角三角形,再利用等腰直角三角形的性質(zhì)即可得出解;
想法2,構(gòu)造出△BDH≌△ADG,進而判斷出△CDH是等腰直角三角形,再利用等腰直角三角形的性質(zhì)即可得出結(jié)論;
(3)同(2)的方法即可得出結(jié)論.
解答 解:(1)∵∠ACB=∠ADB=90°,
∴∠CAD+∠CBD═180°.
∵∠DBE+∠CBD═180°,
∴∠CAD=∠DBE.
∵△ADB是等腰直角三角形,
∴∠ABD=45°,
∵∠ABC=30°,
∴∠CBD=∠ABD+∠ABC=75°,
∴∠CAD=∠DBE=180°-75°=105°
故答案為:105°.
(2)①補全圖形,如圖1所示.![]()
②想法1:
如圖2,
∵∠ACB=∠ADB=90°,
∴∠CAD+∠CBD═180°.
∵∠DBE+∠CBD═180°,
∴∠CAD=∠DBE.
∵DA=DB,AC=BE,
∴△ACD≌△BED.![]()
∴DC=DE,∠ADC=∠BDE.
∴∠CDE=90°.
∴△CDE為等腰直角三角形.
∵AC=1,BC=3,
∴CE=4.
∴CD=$2\sqrt{2}$.
想法2:如圖2,![]()
∵∠ACB=∠ADB=90°,
∴∠CAD+∠CBD═180°.
∵∠DAG+∠CAD═180°,
∴∠CBD=∠DAG.
∵DA=DB,∠DGA=∠DHB=90°,
∴△BDH≌△ADG.
∴DH=DG,BH=AG.
∴∠DCH=∠DCG=45°.
∴△CHD為等腰直角三角形.
∵AC=1,BC=3,
∴CH=2.
∴CD=$2\sqrt{2}$.
(3)AC+BC=$\sqrt{2}$CD,
理由:如圖2,![]()
∵∠ACB=∠ADB=90°,
∴∠CAD+∠CBD═180°.
∵∠DBE+∠CBD═180°,
∴∠CAD=∠DBE.
∵DA=DB,AC=BE,
∴△ACD≌△BED.
∴DC=DE,∠ADC=∠BDE.
∴∠CDE=90°.
∴△CDE為等腰直角三角形.
∴CE=$\sqrt{2}$CD,
∵CE=BC+BE=BC+AC.
即:$AC+BC=\sqrt{2}CD$.
點評 此題是三角形綜合題,主要考查了等角的補角相等,全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì)和判定,解本題的關(guān)鍵是構(gòu)造出全等三角形,進而判斷出△CDE或△CDH是等腰直角三角形,是一道中等難度的中考?碱}.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com