分析 CE=DE,延長(zhǎng)BD至F,使DF=AB,連結(jié)EF,就可以得出BE=BF,得出△BEF是等邊三角形,就可以得出BE=FE,得出△BCE≌△FDE就可以得出結(jié)論.
解答 證明:CE=DE,
如圖,延長(zhǎng)BD至F,使DF=AB,連結(jié)EF,![]()
∵△ABC是等邊三角形,
∴AB=BC=AC,∠B=60°.
∵AE=BD,DF=AB,
∴AE+AB=BD+DF,
∴BE=BF.
∵∠B=60°,
∴△BEF為等邊三角形,
∴∠B=∠F=60°,BE=FE.
∵DF=AB,
∴BC=DF.
在△BCE和△FDE中,
$\left\{\begin{array}{l}{BC=DF}\\{∠B=∠F}\\{BE=FE}\end{array}\right.$,
∴△BCE≌△FDE(SAS),
∴EC=ED
點(diǎn)評(píng) 本題考查了等邊三角形的判定及性質(zhì)的運(yùn)用,等式的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,解答時(shí)證明△BEF是等邊三角形是關(guān)鍵.正確作輔助線是難點(diǎn).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
| a | b | c | a+(-b+c) | a-b+c | a-(-b+c) | a+b-c |
| 3 | 2 | 1 | 2 | 2 | 4 | 4 |
| -4 | 1 | -2 | -7 | -7 | -1 | -1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com