分析 (1)證明四邊形AFDE是平行四邊形,且△DEC和△BDF是等腰三角形即可證得;
(2)與(1)的證明方法相同;
(3)根據(jù)(1)(2)中的結(jié)論直接求解.
解答 解:(1)∵DE∥AC,DF∥AB,
∴四邊形AEDF是平行四邊形,
∴DE=AF,∠FDC=∠B,
又∵∠AB=AC,
∴∠B=∠C
∴∠FDC=∠C,
∴DF=FC,
∴DE+DF=AF+FC=AC;
(2)當(dāng)點(diǎn)D在邊BC的延長線上時(shí),在圖②,DE-DF=AC;
當(dāng)點(diǎn)D在邊BC的反向延長線上時(shí),在圖③,DF-DE=AC.
(3)當(dāng)在圖①的情況,DF=AC-DE=10-7=3;
當(dāng)在圖②的情況,DF=AC+DE=10+7=17.
點(diǎn)評(píng) 本題考查平行四邊形的判定與性質(zhì)以及等腰三角形的判定,是一個(gè)基礎(chǔ)題,解決本題的關(guān)鍵是進(jìn)行分類討論.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| 梯形個(gè)數(shù) | 1 | 2 | 3 | … |
| 圖形周長 | 5a | 8a | 11a | … |
| A. | 167a | B. | 166a | C. | 165a | D. | 164a |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{a+b}{{{a^2}+{b^2}}}$ | B. | $\frac{a}{{{a^2}-3a}}$ | C. | $\frac{2a}{{3{a^2}b}}$ | D. | $\frac{{{a^2}-ab}}{{{a^2}-{b^2}}}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ∠AOC=40° | B. | ∠COE=130° | C. | ∠EOD=40° | D. | ∠BOE=90° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com