| A. | 40 | B. | 41 | C. | 42 | D. | 47 |
分析 延長AB交DC于H,作EG⊥AB于G,則GH=DE=15米,EG=DH,設(shè)BH=x米,則CH=2.4x米,在Rt△BCH中,BC=13米,由勾股定理得出方程,解方程求出BH=5米,CH=12米,得出BG、EG的長度,證明△AEG是等腰直角三角形,得出AG=EG=12+20=32(米),即可得出大樓AB的高度.
解答 解:延長AB交DC于H,作EG⊥AB于G,如圖所示:
則GH=DE=15米,EG=DH,![]()
∵梯坎坡度i=1:2.4,
∴BH:CH=1:2.4,
設(shè)BH=x米,則CH=2.4x米,
在Rt△BCH中,BC=13米,
由勾股定理得:x2+(2.4x)2=132,
解得:x=5,
∴BH=5米,CH=12米,
∴BG=GH-BH=15-5=10(米),EG=DH=CH+CD=12+20=32(米),
∵∠α=45°,
∴∠EAG=90°-45°=45°,
∴△AEG是等腰直角三角形,
∴AG=EG=32(米),
∴AB=AG+BG=32+10=42(米);
故選:C.
點(diǎn)評 本題考查了解直角三角形的應(yīng)用-坡度、俯角問題;通過作輔助線運(yùn)用勾股定理求出BH,得出EG是解決問題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{x+1}{2}$+$\frac{y}{3}$=3(x+1)+2y | |
| B. | $\frac{0.2a-0.03b}{0.4c+0.05d}$=$\frac{2a-3b}{4c+5d}$ | |
| C. | $\frac{a-b}{b-c}$=$\frac{b-a}{c-b}$ | |
| D. | $\frac{2a-2b}{c+d}$=$\frac{a-b}{c+d}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | α+β+γ=180 | B. | α+β=γ | C. | α+β+γ=90 | D. | 2α+2β-γ=45 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x-y2=3 | B. | 2x-y2=9 | C. | 3x-y2=15 | D. | 4x-y2=21 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (ab)2=a2b2 | B. | a5+a5=a10 | C. | (a2)5=a7 | D. | a10÷a5=a2 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com