分析 (1)首先根據(jù)等式的性質(zhì)可得∠BAD=∠CAE,然后再利用SAS定理判定△BAD≌△CAE,進而可得∠AEC=∠ADB=90°,從而可得結(jié)論;
(2)截取CN=CF,由△BAD≌△CAE可得BD=CE,∠ADB=∠AEC=90°,再證明△BDF≌△CEN,推出BF=CN=CF即可.
解答 (1)證明:∵∠BAC=∠DAE,
∴∠BAC-∠DAC=∠DAE-∠DAC,
∴∠BAD=∠CAE,
∵△ABC與△ADE都是以點A為頂點的等腰三角形,
∴AB=AC,AD=AE,
在△BAD和△CAE中$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△BAD≌△CAE(SAS),
∴∠AEC=∠ADB,
∵BD⊥AD,
∴∠ADB=90°,
∴∠AEC=90°,
∴AE⊥CE;![]()
(2)解:截取CN=CF,
∵FD=NC,
∴∠CFN=∠CNF,
∴∠ENC=∠BFD,
∵△BAD≌△CAE,
∴BD=CE,∠ADB=∠AEC=90°,
∴∠AED+∠DEC=90°,∠BDF+∠ADE=180°-∠BDA=90°,
∵AD=AE,
∴∠ADE=∠AED,
∴∠BDF=∠NEC,
在△BDF和△CEN中,$\left\{\begin{array}{l}{∠BFD=∠CNE}\\{∠BDF=∠CEN}\\{BD=CE}\end{array}\right.$,
∴△BDF≌△CEN(AAS),
∴BF=CN=CF,
即BF=CF.
點評 此題主要考查了全等三角形的判定與性質(zhì),關(guān)鍵是正確掌握全等三角形的判定定理,作出輔助線.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | OE=OF | B. | OE≠OF | C. | OE>OF | D. | OE<OF |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2016-2017學(xué)年廣東省東莞市堂星晨學(xué)校八年級3月月考數(shù)學(xué)試卷(解析版) 題型:單選題
如圖,∠AOC=∠BOC,點P在OC上,PD⊥OA于點D,PE⊥OB于點E.若OD=8,OP=10,則PE的長為( )
![]()
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com