| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{5}$ | D. | $\frac{5}{8}$ |
分析 根據(jù)E,F(xiàn)都在反比例函數(shù)的圖象上得出假設(shè)出E,F(xiàn)的坐標(biāo),進(jìn)而分別得出△CEF的面積S1以及△OEF的面積S2,然后即可得出答案.
解答
解:過點(diǎn)F作FR⊥MO于點(diǎn)R,EW⊥NO于點(diǎn)W,
∵$\frac{BE}{BF}$=$\frac{1}{4}$,
∴$\frac{ME}{FR}$=$\frac{1}{4}$,
∵M(jìn)E•EW=FR•NF,
∴$\frac{ME}{FR}$=$\frac{FN}{EW}$=$\frac{1}{4}$,
∴S1=$\frac{1}{2}$(4x-x)(4y-y)=$\frac{9}{2}$xy,
設(shè)E點(diǎn)坐標(biāo)為:(x,4y),則F點(diǎn)坐標(biāo)為:(4x,y),
∵△OEF的面積為:S2=S矩形CNOM-S1-S△MEO-S△FON
=CN•ON-$\frac{9}{2}$xy-$\frac{1}{2}$ME•MO-$\frac{1}{2}$FN•NO
=4x•4y-$\frac{9}{2}$xy-$\frac{1}{2}$x•4y-$\frac{1}{2}$y•4x
=16xy-$\frac{9}{2}$xy-4xy
=$\frac{15}{2}$xy,
∴$\frac{{S}_{1}}{{S}_{2}}$=$\frac{\frac{9}{2}xy}{\frac{15}{2}xy}$=$\frac{3}{5}$.
故選:B.
點(diǎn)評 此題主要考查了反比例函數(shù)的綜合應(yīng)用以及三角形面積求法,根據(jù)已知表示出E,F(xiàn)的點(diǎn)坐標(biāo)是解題關(guān)鍵,難度較大,要求同學(xué)們能將所學(xué)的知識融會貫通.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{\frac{1}{2}}$ | B. | $\sqrt{8}$ | C. | $\sqrt{12}$ | D. | -$\sqrt{18}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{\frac{a}{2^{2}}}$=$\frac{1}{2b}$$\sqrt{a}$(b>0) | B. | $\sqrt{\frac{7x}{12{y}^{3}}}$=$\frac{1}{6{y}^{2}}$$\sqrt{21xy}$ | ||
| C. | $\sqrt{{a}^{2}+^{2}}$=a+b(a≥0,b≥0) | D. | 5$\sqrt{\frac{2a}{5}}$=$\sqrt{2a}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4s | B. | $\frac{5}{2}$s | C. | $\frac{5}{2}$s或4s | D. | 6s |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com