分析 (1)根據(jù)AC為⊙O的直徑,得出△BCD為Rt△,通過已知條件證明△BCD∽△BAC即可;
(2)連結(jié)DO,如圖,根據(jù)直角三角形斜邊上的中線性質(zhì),由∠BDC=90°,E為BC的中點(diǎn)得到DE=CE=BE,則利用等腰三角形的性質(zhì)得∠EDC=∠ECD,∠ODC=∠OCD,由于∠OCD+∠DCE=∠ACB=90°,所以∠EDC+∠ODC=90°,即∠EDO=90°,于是根據(jù)切線的判定定理即可得到DE與⊙O相切.
解答 (1)證明:∵AC為⊙O的直徑,
∴∠ADC=90°,
∴∠BDC=90°,
又∵∠ACB=90°,
∴∠ACB=∠BDC,
又∵∠B=∠B,
∴△BCD∽△BAC;
(2)連結(jié)DO,如圖,
∵∠BDC=90°,E為BC的中點(diǎn),
∴DE=CE=BE,
∴∠EDC=∠ECD,
又∵OD=OC,
∴∠ODC=∠OCD,
而∠OCD+∠DCE=∠ACB=90°,
∴∠EDC+∠ODC=90°,即∠EDO=90°,
∴DE⊥OD,
∴DE與⊙O相切.
點(diǎn)評 本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.要證某線是圓的切線,已知此線過圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.也考查了直角三角形斜邊上的中線性質(zhì)和相似三角形的判定與性質(zhì).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{10}$ | B. | 4 | C. | $\sqrt{6}$ | D. | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-2,4) | B. | (2,4) | C. | (-2,-4) | D. | (8,1) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | k<$\frac{1}{3}$ | B. | k>$-\frac{1}{3}$ | C. | k<$\frac{1}{3}$且k≠0 | D. | k>$-\frac{1}{3}$且k≠0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ②號棒 | B. | ⑦號棒 | C. | ⑧號棒 | D. | ⑩號棒 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com