| A. | 10m | B. | 15m | C. | 18m | D. | 20m |
分析 根據(jù)大樹(shù)的折斷部分與未斷部分、地面恰好構(gòu)成直角三角形,再根據(jù)勾股定理求出AC的長(zhǎng),進(jìn)而可得出結(jié)論.
解答
解:∵樹(shù)的折斷部分與未斷部分、地面恰好構(gòu)成直角三角形,且BC=5m,AB=12m,
∴AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=$\sqrt{1{2}^{2}+{5}^{2}}$=13m,
∴這棵樹(shù)原來(lái)的高度=BC+AC=5+13=18m.
即:這棵大樹(shù)在折斷前的高度為18m.
故選:C.
點(diǎn)評(píng) 本題考查的是勾股定理的應(yīng)用,熟知直角三角形斜邊的平方等于兩直角邊的平方和是解答此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (ab)2=a2b2 | B. | 2a-a=2 | C. | a2+a2=a4 | D. | (a2)3=a5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com