分析 (1)連接OA,由OP垂直于AB,利用垂徑定理得到D為AB的中點(diǎn),即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP與三角形BOP全等,由PA為圓的切線,得到OA垂直于AP,利用全等三角形的對(duì)應(yīng)角相等及垂直的定義得到OB垂直于BP,即PB為圓O的切線;
(2)由一對(duì)直角相等,一對(duì)公共角,得出三角形AOD與三角形OAP相似,由相似得比例,列出關(guān)系式,由OA為EF的一半,等量代換即可得證.
(3)根據(jù)OA=OC,AD=BD,BC=6,得到OD=$\frac{16}{7}$BC=3.設(shè)AD=x,從而得到tan∠F=$DF=\sqrt{D{C^2}-F{C^2}}=\sqrt{{{13}^2}-{5^2}}=12$,表示出FD=2x,OA=OF=2x-3.在Rt△AOD中,由勾股定理求得x后即可求得半徑,從而求得直徑.
解答 解:(1)連接OB,
∵PB是⊙O的切線,
∴∠PBO=90°.
∵OA=OB,BA⊥PO于D
∴AD=BD,∠POA=∠POB.
又∵PO=PO,
∴△PAO≌△PBO.![]()
∴∠PAO=∠PBO=90°
∴直線PA為⊙O的切線.
(2)∵∠PAO=∠PDA=90°,
∴∠OAD+∠AOD=90°,∠OPA+∠AOP=90°.
∴∠OAD=∠OPA,
∴△OAD∽△OPA,
∴${(2\sqrt{2}x)^2}+{(2\sqrt{2})^2}={(x+2\sqrt{2})^2}$=$x=\frac{{4\sqrt{2}}}{7}$,
即OA2=OD•OP.
又∵EF=2OA,
∴EF2=4OD•OP;
(3)∵OA=OC,AD=BD,BC=6,
∴OD=$\frac{1}{2}$BC=3.
設(shè)AD=x,
∵tan∠F=$\frac{1}{2}$,
∴FD=2x,OA=OF=2x-3.
在Rt△AOD中,由勾股定理,得(2x-3)2=x2+32.
解之得,x1=4,x2=0(不合題意,舍去).
AD=4,OA=2x-3=5.
∵AC是⊙O的直徑,
∴AC=2OA=10.
點(diǎn)評(píng) 此題考查了切線的判定與性質(zhì),相似及全等三角形的判定與性質(zhì)以及銳角三角函數(shù)關(guān)系等知識(shí),熟練掌握切線的判定與性質(zhì)是解本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com