分析 把點的坐標代入可求得拋物線解析式,則可求得對稱軸.
解答 解:
∵A(0,3)、B(2,3)是拋物線y=-x2+bx+c上兩點,
∴$\left\{\begin{array}{l}{c=3}\\{-4+2b+c=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{b=2}\\{c=3}\end{array}\right.$,
∴拋物線解析式為y=-x2+2x+3,
∴對稱軸為x=-$\frac{2}{2×(-1)}$=1,
故答案為:x=1.
點評 本題主要考查二次函數(shù)的性質(zhì),由已知點的坐標求得拋物線解析式是解題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com