分析 (1)根據(jù)矩形的性質(zhì)和勾股定理得到AC=10,過P作PM⊥AO,證明△APM∽△ACD,根據(jù)相似三角形的性質(zhì)即可得出答案;
(2)過點O作OH⊥BC交BC于點H,已知BE=PD,則可求△BOE的面積;可證得△DFQ∽△DOC,由相似三角形的面積比可求得△DFQ的面積,從而可求五邊形OECQF的面積.
(3)由角平分線的性質(zhì)得到DM=DN=$\frac{24}{5}$,根據(jù)勾股定理得到ON=OM=$\sqrt{O{D}^{2}-D{N}^{2}}$=$\frac{7}{5}$,由三角形的面積公式得到OP=5-$\frac{5}{8}$t,根據(jù)勾股定理列方程,解方程即可得到結(jié)論.
解答 解:(1)∵在矩形ABCD中,AB=6cm,BC=8cm,∠ABC=90°,![]()
∴AC=10,AO=$\frac{1}{2}$AC=5,
∵AP=PO=t,
過P作PM⊥AO,如圖1所示:
∴AM=$\frac{1}{2}$AO=$\frac{5}{2}$,
∵∠PMA=∠ADC=90°,∠PAM=∠CAD,
∴△APM∽△ACD,
∴$\frac{AP}{AC}=\frac{AM}{AD}$,即$\frac{t}{10}=\frac{\frac{5}{2}}{8}$,
解得:t=$\frac{25}{8}$,
即t=$\frac{25}{8}$時,AP=PO;
(2)過點O作OH⊥BC交BC于點H,則OH=$\frac{1}{2}$CD=$\frac{1}{2}$AB=3cm.![]()
由矩形的性質(zhì)可知∠PDO=∠EBO,DO=BO,
在△DOP和△BOE中,$\left\{\begin{array}{l}{∠PDO=∠EBO}&{\;}\\{OD=OB}&{\;}\\{∠DOP=∠BOE}&{\;}\end{array}\right.$,
∴△DOP≌BOE(ASA),
∴BE=PD=8-t,
則S△BOE=$\frac{1}{2}$BE•OH=$\frac{1}{2}$×3(8-t)=12-$\frac{3}{2}$t.
∵FQ∥AC,
∴△DFQ∽△DOC,相似比為$\frac{DQ}{DC}=\frac{t}{6}$,
∴$\frac{{S}_{△DFQ}}{{S}_{△DOC}}$=$\frac{{t}^{2}}{36}$,
∵S△DOC=$\frac{1}{4}$S矩形ABCD=$\frac{1}{4}$×6×8=12cm2,
∴S△DFQ=12×$\frac{{t}^{2}}{36}$=$\frac{{t}^{2}}{3}$,
∴S五邊形OECQF=S△DBC-S△BOE-S△DFQ=$\frac{1}{2}$×6×8-(12-$\frac{3}{2}$t)-$\frac{{t}^{2}}{3}$=-$\frac{1}{3}$t2+$\frac{3}{2}$t+12;![]()
∴S與t的函數(shù)關(guān)系式為S=-$\frac{1}{3}$t2+$\frac{3}{2}$t+12;
(3)存在,理由如下:
如圖3,過D作DM⊥PE于M,DN⊥AC于N,
∵∠POD=∠COD,
∴DM=DN=$\frac{24}{5}$,
∴ON=OM=$\sqrt{O{D}^{2}-D{N}^{2}}$=$\frac{7}{5}$,
∵OP•DM=3PD,
∴OP=5-$\frac{5}{8}$t,
∴PM=$\frac{18}{5}$-$\frac{5}{8}$t,
∵PD2=PM2+DM2,
∴(8-t)2=($\frac{18}{5}$-$\frac{5}{8}$t)2+($\frac{24}{5}$)2,
解得:t=16(不合題意,舍去),t=$\frac{112}{39}$,
∴當(dāng)t=$\frac{112}{39}$時,OD平分∠COP.
點評 本題是四邊形綜合題目,考查了矩形的性質(zhì),角平分線的性質(zhì),相似三角形的判定和性質(zhì),圖形面積的計算,全等三角形的判定和性質(zhì)、勾股定理等知識;本題綜合性強,有一定難度,證明三角形全等和三角形相似是解決問題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x-y2=2 | B. | 3x+2y=1 | C. | $\frac{1}{x}$=y+1 | D. | $\frac{x}{2}$+5y |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3 | B. | -3 | C. | 6 | D. | -6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (a-3)2=a2-9 | B. | a2•a4=a8 | C. | $\sqrt{9}$=±3 | D. | x6÷x3=x3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 由5x=-4得x=-$\frac{5}{4}$ | B. | 由4x+2=3x-1得4x+3x=2-1 | ||
| C. | 由$\frac{x}{5}$-1=2得x-5=2 | D. | 由4x-3=2x-2得2x=1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (2x+y)(2x-y) | B. | (x-y)(y-x) | C. | (-x+y)(-x-y) | D. | (x+y)(-x+y) |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com