分析 利用同角的余角相等得到一對(duì)角相等,再由一對(duì)直角相等,CD=CE,利用AAS得到三角形ECB與三角形CDA全等,利用全等三角形對(duì)應(yīng)邊相等得到BC=AD,BE=AC,由AB+BC=AC=BE,等量代換即可得證.
解答 解:因?yàn)?nbsp;AD⊥AC,BE⊥AC(已知),
所以∠A=∠EBC=90°(垂直的意義).
又因?yàn)椤螦+∠D+∠ACD=180°(三角形的內(nèi)角和等于180°)
得∠D+∠ACD=90°.
因?yàn)椤螪CE=90° (已知),
得∠BCE+∠ACD=90°,
∴∠ECB=∠D,
在△ECB和△CDA中,$\left\{\begin{array}{l}{∠ECB=∠D}\\{∠EBC=∠A=90°}\\{CE=CD}\end{array}\right.$,
∴△ECB≌△CDA(AAS),
∴BC=AD,BE=AC,
∴AD+AB=AB+BC=AC=BE.
故答案為:三角形的內(nèi)角和等于180°,∴∠ECB=∠D,
在△ECB和△CDA中,$\left\{\begin{array}{l}{∠ECB=∠D}\\{∠EBC=∠A=90°}\\{CE=CD}\end{array}\right.$,
∴△ECB≌△CDA(AAS),
∴BC=AD,BE=AC,
∴AD+AB=AB+BC=AC=BE.
點(diǎn)評(píng) 此題考查了全等三角形的判定與性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 相交,相交 | B. | 平行,平行 | C. | 垂直相交,平行 | D. | 平行,垂直相交 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com