| A. | $\frac{1}{2}$或2 | B. | $\frac{1}{2}$或8 | C. | 2或6 | D. | 2或8 |
分析 由P1N∥y軸,P2N∥x軸得到P1的橫坐標為m,P2的縱坐標為n,再根據(jù)反比例函數(shù)圖象上點的坐標特征得P1(m,$\frac{4}{m}$),P2($\frac{4}{n}$,n),則NP1=$\frac{4}{m}$-n,NP2=$\frac{4}{n}$-m,所以($\frac{4}{m}$-n)($\frac{4}{n}$-m)=2,解關(guān)于mn的一元二次方程得mn=2或mn=8,加上點N(m,n)在反比例函數(shù)y=$\frac{k}{x}$的圖象上,則k=mn,于是可得k=2或8.
解答 解:∵P1N∥y軸,P2N∥x軸,
∴P1的橫坐標為m,P2的縱坐標為n,
而點P1,P2是反比例函數(shù)圖象y=$\frac{4}{x}$上任意兩點,
∴P1(m,$\frac{4}{m}$),P2($\frac{4}{n}$,n),
∴NP1=$\frac{4}{m}$-n,NP2=$\frac{4}{n}$-m,
∴($\frac{4}{m}$-n)($\frac{4}{n}$-m)=2,
整理得(mn)2-10mn+16=0,解得mn=2或mn=8,
∵點N(m,n)在反比例函數(shù)y=$\frac{k}{x}$的圖象上,
∴k=mn,
∴k=2或8.
故選D.
點評 本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)y=$\frac{k}{x}$(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x-1 | B. | 1-x | C. | 1 | D. | -1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ∠BOC=2∠A | B. | ∠BOC=90°+∠A | C. | ∠BOC=90°+$\frac{1}{2}$∠A | D. | ∠BOC=90°-$\frac{1}{2}$∠A |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com