分析 由條件結(jié)合對(duì)頂角相等可證明BD∥CE,可得到∠C=∠ABD,再結(jié)合條件可得到∠D=∠ABD,可證明AC∥DF,據(jù)此填空即可.
解答 解:∵∠1=∠2( 已知),
∠1=∠3( 對(duì)頂角相等),
∴∠2=∠3( 等量代換),
∴BD∥CE( 同位角相等,兩直線平行),
∴∠C=∠ABD ( 兩直線平行,同位角相等),
又∵∠C=∠D( 已知),
∴∠D=∠ABD( 等量代換),
∴AC∥DF( 內(nèi)錯(cuò)角相等,兩直線平行),
故答案為:已知;對(duì)頂角相等;等量代換;BD;CE;同位角相等,兩直線平行;兩直線平行,同位角相等;已知;等量代換;內(nèi)錯(cuò)角相等,兩直線平行.
點(diǎn)評(píng) 本題主要考查平行線的判定和性質(zhì),掌握平行線的判定和性質(zhì)是解題的關(guān)鍵,即①同位角相等?兩直線平行,②內(nèi)錯(cuò)角相等?兩直線平行,③同旁內(nèi)角互補(bǔ)?兩直線平行,④a∥b,b∥c⇒a∥c.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2$\sqrt{3}$ | B. | $\frac{9}{2}$$\sqrt{3}$ | C. | 6$\sqrt{3}$ | D. | 3$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 60° | B. | 95° | C. | 80° | D. | 75° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
| x | -7 | -6 | -5 | -4 | -3 | -2 |
| y | -27 | -13 | -3 | 3 | 5 | 3 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com