分析 (1)由在邊長為4的菱形ABCD中,BD=4,易得△ABD、△CBD都是邊長為4的正三角形,繼而證得△BDE≌△BCF(SAS),則可證得結論;
(2)由△BDE≌△BCF,易證得△BEF是正三角形,繼而可得當動點E運動到點D或點A時,BE的最大,當BE⊥AD,即E為AD的中點時,BE的最。
解答 解:(1)BE=BF,證明如下:
∵四邊形ABCD是邊長為4的菱形,BD=4,
∴△ABD、△CBD都是邊長為4的正三角形,
∵AE+CF=4,
∴CF=4-AE=AD-AE=DE,
又∵BD=BC=4,∠BDE=∠C=60°,
在△BDE和△BCF中,
$\left\{\begin{array}{l}{DE=DF}\\{∠BDE=∠C}\\{BD=BC}\end{array}\right.$,
∴△BDE≌△BCF(SAS),
∴BE=BF;
(2)∵△BDE≌△BCF,
∴∠EBD=∠FBC,
∴∠EBD+∠DBF=∠FBC+∠DBF,
∴∠EBF=∠DBC=60°,
又∵BE=BF,
∴△BEF是正三角形,
∴EF=BE=BF,
當動點E運動到點D或點A時,BE的最大值為4,
當BE⊥AD,即E為AD的中點時,BE的最小值為$2\sqrt{3}$,
∵EF=BE,
∴EF的最大值為4,最小值為$2\sqrt{3}$.
點評 此題考查了菱形的性質、等邊三角形的判定與性質以及全等三角形的判定與性質.注意證得△BDE≌△BCF是解此題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | k$<\frac{9}{2}$ | B. | k=$\frac{9}{4}$ | C. | k$≥\frac{9}{2}$ | D. | k$>\frac{9}{4}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com