已知
(
).
(1)當(dāng)
時,判斷
在定義域上的單調(diào)性;
(2)若
在
上的最小值為
,求
的值;
(3)若
在
上恒成立,試求
的取值范圍.
(1)單調(diào)遞增 (2)
(3)![]()
解析試題分析:(1)判斷函數(shù)的單調(diào)性常用作差比較法、導(dǎo)函數(shù)法.其共同點都是與0比大小確定單調(diào)性.也可以利用基本初等函數(shù)的單調(diào)性來判斷:當(dāng)
時,因為
與
在
上都是單調(diào)遞增,所以
(
)在定義域
上單調(diào)遞增;(2)利用導(dǎo)函數(shù)法求閉區(qū)間上的最值,首先要求出極值,然后再與兩個端點函數(shù)值比較得出最值;既要靈活利用單調(diào)性,又要注意對字母系數(shù)
進行討論;(3)解決“恒成立”問題,常用分離參數(shù)法,轉(zhuǎn)化為求新構(gòu)造函數(shù)的最值(或值域).
試題解析:(1)由題意得
,且
1分
顯然,當(dāng)
時,
恒成立,
在定義域上單調(diào)遞增; 3分
(2)當(dāng)
時由(1)得
在定義域上單調(diào)遞增,所以
在
上的最小值為
,
即
(與
矛盾,舍); 5分
當(dāng)
,
顯然在
上單調(diào)遞增,最小值為0,不合題意; 6分
當(dāng)
,
,![]()
若
(舍);
若
(滿足題意);
(舍); 9分
綜上所述
. 10分
(3)若
在
上恒成立,即在
上
恒成立,(分離參數(shù)求解)
等價于
在
恒成立,
令
. 則
; 11分
令
,則![]()
顯然當(dāng)
時
,
在
上單調(diào)遞減,
,
即
恒成立,說明
在
單調(diào)遞減,
; 13分
所以
. &nb
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
(1)如果
在
處取得最小值
,求
的解析式;
(2)如果
,
的單調(diào)遞減區(qū)間的長度是正整數(shù),試求
和
的值.(注:區(qū)間
的長度為
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(Ⅰ)若
,求
的極大值;
(Ⅱ)若
在定義域內(nèi)單調(diào)遞減,求滿足此條件的實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)當(dāng)
時,求函數(shù)
的最大值;
(2)若函數(shù)
沒有零點,求實數(shù)
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
).
(1)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)
時,
取得極值,求函數(shù)
在![]()
上的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
在點
處的切線方程是x+ y-l=0,其中e為自然對數(shù)的底數(shù),函數(shù)g(x)=1nx- cx+ 1+ c(c>0),對一切x∈(0,+
)均有
恒成立.
(Ⅰ)求a,b,c的值;
(Ⅱ)求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在
的函數(shù)![]()
,在
處的切線斜率為![]()
(Ⅰ)求
及
的單調(diào)區(qū)間;
(Ⅱ)當(dāng)
時,
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
.
(Ⅰ)當(dāng)
時,函數(shù)
取得極大值,求實數(shù)
的值;
(Ⅱ)已知結(jié)論:若函數(shù)![]()
在區(qū)間
內(nèi)存在導(dǎo)數(shù),則存在
,使得
. 試用這個結(jié)論證明:若函數(shù)
(其中
),則對任意
,都有
;
(Ⅲ)已知正數(shù)
滿足
,求證:對任意的實數(shù)
,若
時,都
有
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com