【題目】如圖,在四棱錐
中,底面
是梯形,且
,
,點
是線段
的中點,過
的平面
交平面
于
,且
,
,且
,
,
.
![]()
(1)求證:
;
(2)求直線
與平面
所成角的余弦值.
【答案】(1)證明見解析(2)![]()
【解析】
(1)先證明四邊形
是平行四邊形,可得
,則可證明
平面
,再利用線面平行的性質定理證明
;
(2)先證明
,
,
兩兩垂直,則可建立如圖所示的空間直角坐標系
,求出
,再求出平面
的一個法向量,可得直線
與平面
所成角的正弦值,進一步求解余弦值.
(1)證明:因為
且
,所以四邊形
是平行四邊形,所以
,
平面
,
平面
,所以
平面
,
平面
,
平面
平面
,
所以
;
(2)在
中,因為
,
,
所以由正弦定理
,即
,
所以
,∴
,∴在
中![]()
所以
,
因為
是等腰三角形,且
,點
是線段
的中點,
得
,
,
,
在
中,
,
為
中點,所以
,
又由已知
且
,故
平面
,
又
平面
,所以
;
在
中,由
,
,可知
,
易知四邊形
為平行四邊形,所以
,
故
,
,
兩兩垂直;
所以建立如圖所示的空間直角坐標系
,
![]()
則
,
,
,
,
設平面
的一個法向量為
,
又
,
,所以
,
即
,令
,解得
,
,
所以
為平面
的一個法向量,
因為
,設直線
與平面
所成的角為
,
則
,
∴
,
故直線
與平面
所成角的余弦值為
.
科目:高中數(shù)學 來源: 題型:
【題目】我國南宋數(shù)學家楊輝在所著的《詳解九章算法》一書中用如圖所示的三角形解釋二項展開式的系數(shù)規(guī)律,去掉所有為1的項,依次構成2,3,3,4,6,4,5,10,10,5,6…,則此數(shù)列的前50項和為( )
![]()
A.2025B.3052C.3053D.3049
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,已知點P的直角坐標為
,點M的極坐標為
,若直線l過點P,且傾斜角為
,圓C以M為圓心,1為半徑.
(1)求直線l的參數(shù)方程和圓C的極坐標方程.
(2)設直線l與圓C相交于AB兩點,求
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司甲、乙兩個班組分別試生產(chǎn)同一種規(guī)格的產(chǎn)品,已知此種產(chǎn)品的質量指標檢測分數(shù)不小于70時,該產(chǎn)品為合格品,否則為次品,現(xiàn)隨機抽取兩個班組生產(chǎn)的此種產(chǎn)品各100件進行檢測,其結果如下表:
質量指標檢測分數(shù) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
甲班組生產(chǎn)的產(chǎn)品件數(shù) | 7 | 18 | 40 | 29 | 6 |
乙班組生產(chǎn)的產(chǎn)品件數(shù) | 8 | 12 | 40 | 32 | 8 |
(1)根據(jù)表中數(shù)據(jù),估計甲、乙兩個班組生產(chǎn)該種產(chǎn)品各自的不合格率;
(2)根據(jù)以上數(shù)據(jù),完成下面的2×2列聯(lián)表,并判斷是否有95%的把握認為該種產(chǎn)品的質量與生產(chǎn)產(chǎn)品的班組有關?
甲班組 | 乙班組 | 合計 | |
合格品 | |||
次品 | |||
合計 |
(3)若按合格與不合格比例,從甲班組生產(chǎn)的產(chǎn)品中抽取4件產(chǎn)品,從乙班組生產(chǎn)的產(chǎn)品中抽取5件產(chǎn)品,記事件A:從上面4件甲班組生產(chǎn)的產(chǎn)品中隨機抽取2件,且都是合格品;事件B:從上面5件乙班組生產(chǎn)的產(chǎn)品中隨機抽取2件,一件是合格品,一件是次品,試估計這兩個事件哪一種情況發(fā)生的可能性大.
附:![]()
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知半徑為5的圓的圓心在x軸上,圓心的橫坐標是整數(shù),且與直線
相切.
(1)求圓的方程;
(2)若直線
與圓相交于A,B兩點,是否存在實數(shù)a,使得過點
的直線l垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知表1和表2是某年部分日期的天安門廣場升旗時刻表.
表1:某年部分日期的天安門廣場升旗時刻表
日期 | 升旗時刻 | 日期 | 升旗時刻 | 日期 | 升旗時刻 | 日期 | 升旗時刻 |
1月1日 | 7:36 | 4月9日 | 5:46 | 7月9日 | 4:53 | 10月8日 | 6:17 |
1月21日 | 7:31 | 4月28日 | 5:19 | 7月27日 | 5:07 | 10月26日 | 6:36 |
2月10日 | 7:14 | 5月16日 | 4:59 | 8月14日 | 5:24 | 11月13日 | 6:56 |
3月2日 | 6:47 | 6月3日 | 4:47 | 9月2日 | 5:42 | 12月1日 | 7:16 |
3月22日 | 6:15 | 6月22日 | 4:46 | 9月20日 | 5:59 | 12月20日 | 7:31 |
表2:某年2月部分日期的天安門廣場升旗時刻表
日期 | 升旗時刻 | 日期 | 升旗時刻 | 日期 | 升旗時刻 |
2月1日 | 7:23 | 2月11日 | 7:13 | 2月21日 | 6:59 |
2月3日 | 7:22 | 2月13日 | 7:11 | 2月23日 | 6:57 |
2月5日 | 7:20 | 2月15日 | 7:08 | 2月25日 | 6:55 |
2月7日 | 7:17 | 2月17日 | 7:05 | 2月27日 | 6:52 |
2月9日 | 7:15/p> | 2月19日 | 7:02 | 2月28日 | 6:49 |
(1)從表1的日期中隨機選出一天,試估計這一天的升旗時刻早于7:00的概率;
(2)甲,乙二人各自從表2的日期中隨機選擇一天觀看升旗,且兩人的選擇相互獨立.記
為這兩人中觀看升旗的時刻早于7:00的人數(shù),求
的分布列和數(shù)學期望
.
(3)將表1和表2中的升旗時刻化為分數(shù)后作為樣本數(shù)據(jù)(如7:31化為
).記表2中所有升旗時刻對應數(shù)據(jù)的方差為
,表1和表2中所有升旗時刻對應數(shù)據(jù)的方差為
,判斷
與
的大小(只需寫出結論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“開門大吉”是某電視臺推出的游戲節(jié)目,選手面對1
號8扇大門,依次按響門上的門鈴,門鈴會播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌的名字,方可獲得該扇門對應的家庭夢想基金,在一次場外調查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個年齡段:
;
(單位:歲),其猜對歌曲名稱與否的人數(shù)如圖所示.
![]()
(Ⅰ)寫出
列聯(lián)表;判斷是否有
的把握認為猜對歌曲名稱是否與年齡有關;說明你的理由;(如表的臨界值表供參考)
| 0.10 | 0.05 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
(Ⅱ)現(xiàn)計劃在這次場外調查中按年齡段用分層抽樣的方法選取6名選手,并抽取3名幸運選手,求3名幸運選手中恰好有一人在
歲之間的概率.
(參考公式:
,其中
)
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com