欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
9.如圖所示,游樂場中摩天輪勻速逆時針旋轉,每轉一圈需要6min,其中心距離地面40.5m,摩天輪的半徑為40m,已知摩天輪上點P的起始位置在最低點處,在時刻t(min)時點P距離地面的高度為f(t)=Asin(wt+φ)+h(A>0,w>0,-π<φ<0,t≥0).
(1)求f(t)的單調區(qū)間;
(2)求證:f(t)+f(t+2)+f(t+4)是定值.

分析 (1)利用正弦函數的圖象和性質,求得f(t)的解析式,再利用余弦函數的單調性求得f(t)的單調區(qū)間.
(2)利用誘導公式、兩角和差的三角公式化簡 f(t)+f(t+2)+f(t+4),可得結論.

解答 解:(1)由題意可得A=40,$\frac{2π}{ω}$=6,∴ω=$\frac{π}{3}$,φ=-$\frac{π}{2}$,h=40.5,
故f(t)=40sin($\frac{π}{3}$t-$\frac{π}{2}$)+40.5=40.5-40cos$\frac{π}{3}$t,
令2kπ≤$\frac{π}{3}$t≤2kπ+π,求得6k≤t≤6k+3,可得函數的增區(qū)間為[6k,6k+3],k∈Z;
令2kπ+π≤$\frac{π}{3}$t≤2kπ+2π,求得6k+3≤t≤6k+6,可得函數的減區(qū)間為[6k+3,6k+6],k∈Z.
(2)證明:∵f(t)=40.5-40cos$\frac{π}{3}$t,
∴f(t)+f(t+2)+f(t+4)=121.5-40[cos$\frac{π}{3}$t+cos($\frac{π}{3}$t+$\frac{2π}{3}$)+cos($\frac{π}{3}$t+$\frac{4π}{3}$)].
又 cos$\frac{π}{3}$t+cos($\frac{π}{3}$t+$\frac{2π}{3}$)-cos($\frac{π}{3}$t+$\frac{π}{3}$)=cos$\frac{π}{3}$t-cos($\frac{π}{3}$t-$\frac{π}{3}$)-cos($\frac{π}{3}$t+$\frac{π}{3}$)
=cos$\frac{π}{3}$t-cos$\frac{π}{3}$t-$\frac{\sqrt{3}}{2}$sin$\frac{π}{3}$t+$\frac{\sqrt{3}}{2}$sin$\frac{π}{3}$t=0,
∴f(t)+f(t+2)+f(t+4)=121.5-40×0=121.5,顯然為定值,
故要證得結論成立.

點評 本題主要考查正弦函數的圖象和性質,余弦函數的單調性,誘導公式、兩角和差的三角公式的應用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

19.若規(guī)定$|\begin{array}{l}{a}&\\{c}&s06hzgl\end{array}|$=ad-bc,則$|\begin{array}{l}{1}&{2}\\{x}&{{x}^{2}}\end{array}|$<3的解集是{x|-1<x<3}.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.已知函數f(x)=|log2x|,若實數a,b(a<b)滿足f(a)=f(b),則a+2017b的范圍是(2018,+∞).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.已知$\overrightarrow{a}$=(2,1),$\overrightarrow$=(2,-2),則2$\overrightarrow{a}$-$\overrightarrow$=(2,4).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.m,n是不同的直線,α,β是不重合的平面,下列說法正確的是( 。
A.若α∥β,m?α,n?β,則m∥n
B.若m,n?α,m∥β,n∥β,則α∥β
C.m,n是異面直線,若m∥α,m∥β,n∥α,n∥β,則α∥β
D.若α∥β,m∥α,則m∥β

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.已知函數f(x)=alnx+blog2x+1,f(2017)=3,則$f(\frac{1}{2017})$等于(  )
A.-1B.2C.-2D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.$\int_{-1}^1{({sinx+\sqrt{1-{x^2}}})}dx$=( 。
A.$\frac{π}{2}$B.πC.$\frac{π}{4}$D.0

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知函數$f(x)=alnx+\frac{x^2}{2}-(a-1)x,a∈R$.
(1)若函數f(x)在區(qū)間(1,3)上單調遞減,求a的取值范圍;
(2)當a=-1時,證明:$f(x)≥\frac{1}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.已知函數$f(x)=\frac{{\sqrt{3}}}{2}sin2x+{cos^2}x-\frac{1}{2}$,若將其圖象向左平移φ(φ>0)個單位后所得的圖象關于原點對稱,則φ的最小值為( 。
A.$\frac{5π}{6}$B.$\frac{7π}{12}$C.$\frac{5π}{12}$D.$\frac{π}{12}$

查看答案和解析>>

同步練習冊答案