【題目】某大學(xué)高等數(shù)學(xué)這學(xué)期分別用
兩種不同的數(shù)學(xué)方式試驗(yàn)甲、乙兩個(gè)大一新班(人數(shù)均為
人,入學(xué)數(shù)學(xué)平均分和優(yōu)秀率都相同;勤奮程度和自覺性都一樣).現(xiàn)隨機(jī)抽取甲、乙兩班各
名的高等數(shù)學(xué)期末考試成績,得到莖葉圖:
![]()
(1)學(xué)校規(guī)定:成績不得低于85分的為優(yōu)秀,請?zhí)顚懴旅娴?/span>
列聯(lián)表,并判斷“能否在犯錯(cuò)誤率的概率不超過0.025的前提下認(rèn)為成績優(yōu)異與教學(xué)方式有關(guān)?”
下面臨界值表僅供參考:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(參考方式:
,其中
)
(2)現(xiàn)從甲班高等數(shù)學(xué)成績不得低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績?yōu)?6分的同學(xué)至少有一個(gè)被抽中的概率.
【答案】(1)見解析;(2)
.
【解析】
試題根據(jù)莖葉圖所提供的數(shù)據(jù),填寫
列聯(lián)表,根據(jù)獨(dú)立性檢驗(yàn)方法先計(jì)算隨機(jī)變量觀測值
,計(jì)算要準(zhǔn)確,保留3位小數(shù),根據(jù)臨界值表發(fā)現(xiàn)
,因此在犯錯(cuò)誤的概率不超過0.025的前提下,可以認(rèn)為成績優(yōu)秀與數(shù)學(xué)方式有關(guān);甲班不低于80分有6人,隨機(jī)抽取兩人,用列舉法列出15種情況,至少有1名86分的情況有9種,求出概率值.
試題解析:(1)
甲班 | 乙班 | 合計(jì) | |
優(yōu)秀 |
|
|
|
不優(yōu)秀 |
|
|
|
合計(jì) |
|
|
|
,因此在犯錯(cuò)誤的概率不超過0.025的前提下,可以認(rèn)為成績優(yōu)秀與數(shù)學(xué)方式有關(guān).
(2)甲班不低于80分有6人,隨機(jī)抽取兩人,用列舉法列出15種情況,至少有1名86分的情況有9種,![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(-4,2)是Rt△
的直角頂點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)B在x軸上.
(1)求直線AB的方程;
(2)求△OAB的外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題
,
;
.
(1)若
為假命題,求實(shí)數(shù)
的取值范圍;
(2))若
為真命題,
為假命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體
中,四邊形
為正方形,
,
,
.
![]()
(1)證明:平面
平面
.
(2)若
平面
,二面角
為
,三棱錐
的外接球的球心為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 (2017·黃岡質(zhì)檢)如圖,在棱長均為2的正四棱錐P-ABCD中,點(diǎn)E為PC的中點(diǎn),則下列命題正確的是( )
![]()
A.BE∥平面PAD,且BE到平面PAD的距離為![]()
B.BE∥平面PAD,且BE到平面PAD的距離為![]()
C.BE與平面PAD不平行,且BE與平面PAD所成的角大于30°
D.BE與平面PAD不平行,且BE與平面PAD所成的角小于30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
與橢圓
有一個(gè)相同的焦點(diǎn),過點(diǎn)
且與
軸不垂直的直線
與拋物線
交于
,
兩點(diǎn),
關(guān)于
軸的對稱點(diǎn)為
.
(1)求拋物線
的方程;
(2)試問直線
是否過定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程(本題滿分10分)
在平面直角坐標(biāo)系中,將曲線
向左平移2個(gè)單位,再將得到的曲線上的每一個(gè)點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來的
,得到曲線
,以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,
的極坐標(biāo)方程為
.
(1)求曲線
的參數(shù)方程;
(2)已知點(diǎn)
在第一象限,四邊形
是曲線
的內(nèi)接矩形,求內(nèi)接矩形
周長的最大值,并求周長最大時(shí)點(diǎn)
的坐標(biāo).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com