【題目】中國古代儒家要求學(xué)生掌握六種基本才能:禮樂射御書數(shù),某校國學(xué)社團(tuán)周末開展“六藝”課程講座活動,每天連排六節(jié),每藝一節(jié),排課有如下要求:“禮”和“數(shù)”不能相鄰,“射”和“樂”必須相鄰,則“六藝”課程講座不同的排課順序共有( )
A.24種B.72種C.96種D.144種
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線E的參數(shù)方程為
(
為參數(shù)),以O為極點,x軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線
,
的極坐標(biāo)方程分別為
,
,
交曲線E于點A,B,
交曲線E于點C,D.
(1)求曲線E的普通方程及極坐標(biāo)方程;
(2)求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線的極坐標(biāo)方程為
,以極點為原點,極軸為
軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù),
).
(1)求曲線
的直角坐標(biāo)方程和直線
的普通方程;
(2)若曲線
上的動點
到直線
的最大距離為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線
的焦點為
,準(zhǔn)線為
,
為拋物線
過焦點
的弦,已知以
為直徑的圓與
相切于點
.
(1)求
的值及圓的方程;
(2)設(shè)
為
上任意一點,過點
作
的切線,切點為
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動直線l過拋物線C:y2=4x的焦點F,且與拋物線C交于M,N兩點,且點M在x軸上方.
(1)若線段MN的垂直平分線交x軸于點Q,若|FQ|=8,求直線l的斜率;
(2)設(shè)點P(x0,0),若點M恒在以FP為直徑的圓外,求x0的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形
中,
,
,
,
.把
沿著
翻折至
的位置,
平面
,連結(jié)
,如圖2.
![]()
(1)當(dāng)
時,證明:平面
平面
;
(2)當(dāng)三棱錐
的體積最大時,求點
到平面
的距離.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com