分析 由根式內(nèi)部的代數(shù)式大于等于0,對數(shù)式的真數(shù)大于0,然后求解三角不等式得答案.
解答 解:要使原函數(shù)有意義,則$\left\{\begin{array}{l}{2sinx+1≥0①}\\{2cosx-\sqrt{2}>0②}\end{array}\right.$,
解①得:$-\frac{π}{6}+2kπ≤x≤\frac{7π}{6}+2kπ,k∈Z$;
解②得:$-\frac{π}{4}+2kπ<x<\frac{π}{4}+2kπ,k∈Z$;
取交集得:x∈[$-\frac{π}{6}+2kπ,\frac{π}{4}+2kπ$),k∈Z.
故答案為:[$-\frac{π}{6}+2kπ,\frac{π}{4}+2kπ$),k∈Z.
點評 本題考查函數(shù)的定義域及其求法,考查了三角不等式的解法,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2 | B. | 2$\sqrt{3}$ | C. | $\sqrt{26}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2a>2b | B. | 2a>2c | C. | 2-a<2c | D. | 2a+2c<2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{2+2\sqrt{2}}{3}$ | B. | $\frac{3+\sqrt{2}}{3}$ | C. | $\frac{2+3\sqrt{2}}{3}$ | D. | $\frac{6+2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com