欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

5.已知雙曲線C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1,則直線y=$\frac{\sqrt{3}}{2}$x與C有0個公共點;若直線y=k(x-3)與C只有一個公共點.則k取值范圍為{-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$}.

分析 求得雙曲線的漸近線方程,考慮與漸近線平行的直線的特點,求得直線y=k(x-3恒過定點(3,0),即可得到所求范圍.

解答 解:雙曲線C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的漸近線方程為y=±$\frac{\sqrt{3}}{2}$x,
即有直線y=$\frac{\sqrt{3}}{2}$x與C沒有公共點;
直線y=k(x-3)恒過定點(3,0),
由(3,0)在雙曲線的右支開口之內(nèi),
則只有過(3,0)的直線與漸近線平行,與雙曲線只有一個公共點,
故k=±$\frac{\sqrt{3}}{2}$.
故答案為:0,{-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$}.

點評 本題考查雙曲線的漸近線方程及應(yīng)用,考查直線恒過定點的求法,以及直線和雙曲線的位置關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知向量$\overrightarrow a$,$\overrightarrow b$滿足|${\overrightarrow a}$|=2,|${\overrightarrow b}$|=1,($\overrightarrow b$-2$\overrightarrow a$)⊥$\overrightarrow b$,則|${\overrightarrow a$+$\overrightarrow b}$|=$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知直線y=k(x+a)(a>0)與x軸交于點A,與直線x=c(c>0,c<a)交于點M,橢圓C以A為左頂點,以F(c,0)為右焦點,且過點M,當(dāng)$\frac{1}{3}$<k<$\frac{1}{2}$時,橢圓C的離心率的范圍是( 。
A.$(0,\frac{2}{3})$B.$(\frac{2}{3},1)$C.$(\frac{1}{2},1)$D.$(\frac{1}{2},\frac{2}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.把正整數(shù)排列成如圖l三角形數(shù)陣,然后擦去偶數(shù)行中的所有奇數(shù)和奇數(shù)行中的所有偶數(shù),可得到如圖2的三角形數(shù)陣.現(xiàn)將圖2中的正整數(shù)按從小到大的順序排成一列,得到一個數(shù)列{an}.則
(Ⅰ)a23=39;
(Ⅱ)若ak=2013,則k=1029.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在四面體A-BCD中,已知點M,N,P分別在棱AD,BD,CD上,點S在平面ABC內(nèi),畫出線段SD與過點M,N,P的截面的交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)數(shù)列{xn}滿足0<x1<π,xn+1=sinxn(n=1,2,…),證明$\underset{lim}{n→∞}$xn存在極限,并求該極限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=sin2x-$\sqrt{3}$cos2x+1.
(Ⅰ)求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若對于任意x∈[$\frac{π}{4}$,$\frac{π}{2}$],都有|f(x)-m|<2成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x<0}\\{x,x≥0}\end{array}\right.$,作出f(x)的圖象;求$\underset{lim}{x→{0}^{+}}$f(x)與$\underset{lim}{x→{0}^{-}}$f(x);判別$\underset{lim}{x→0}$f(x)是否存在.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的圖象如圖所示:
(1)求ω和φ的值,并寫出函數(shù)f(x)的表達(dá)式;
(2)求最小正實數(shù)m,使得函數(shù)f(x)的圖象向左平移m個單位所對應(yīng)的函數(shù)g(x)是偶函數(shù).
(3)在(2)的條件下,若函數(shù)y=h(x)與函數(shù)g(x)的圖象關(guān)于直線x=$\frac{1}{2}$對稱,試求當(dāng)x∈[1,$\frac{4}{3}$]時函數(shù)y=h(x)的最小值.

查看答案和解析>>

同步練習(xí)冊答案