【題目】已知橢圓
的左、右焦點(diǎn)分別為
,弦
過(guò)點(diǎn)
,
的周長(zhǎng)為
,橢圓
的離心率為![]()
(1)求橢圓
的方程;
(2)若
,求
的面積.
【答案】(1)
;(2)![]()
【解析】
(1)由橢圓的定義以及△ABF2的周長(zhǎng)可以得出
,再結(jié)合離心率即可求出
和
,即可得橢圓方程;
(2)由題意條件設(shè)出直線(xiàn)
的方程
和橢圓方程聯(lián)立消
化簡(jiǎn)得出
,利用向量數(shù)量積的坐標(biāo)運(yùn)算化簡(jiǎn)
,并聯(lián)立求出參數(shù)
,然后利用直線(xiàn)與橢圓的交點(diǎn)弦弦長(zhǎng)求
點(diǎn)
到直線(xiàn)
距離
,最后由S=
即可得出答案.
(1)如圖由橢圓的定義及△ABF2的周長(zhǎng)為8,
可得
,解得
,
由離心率
,解得
,所以
,
則所求的橢圓方程為
.
![]()
(2)由題意設(shè)直線(xiàn)
的方程
,A(
),B(
),聯(lián)立
,
消
化簡(jiǎn)得:
,
則:
,由
,![]()
得:![]()
和韋達(dá)定理聯(lián)立可解得
,
由
,得
,
由點(diǎn)
到直線(xiàn)
距離
,
所以△ABF2得面積為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)討論函數(shù)
的單調(diào)性;
(2)若
,對(duì)任意
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的圖象向右平移
個(gè)單位長(zhǎng)度,所得圖象對(duì)應(yīng)的函數(shù)為
.
(1)求函數(shù)
的表達(dá)式及其周期;
(2)求函數(shù)
在
上的對(duì)稱(chēng)軸、對(duì)稱(chēng)中心及其單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知向量
,設(shè)
,向量
.
(1)若
,求向量
與
的夾角;
(2)若
對(duì)任意實(shí)數(shù)
都成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)角形海灣
(常數(shù)
為銳角).?dāng)M用長(zhǎng)度為
(
為常數(shù))的圍網(wǎng)圍成一個(gè)養(yǎng)殖區(qū),有以下兩種方案可供選擇:方案一:如圖1,圍成扇形養(yǎng)殖區(qū)
,其中
;方案二:如圖2,圍成三角形養(yǎng)殖區(qū)
,其中
.
![]()
(1)求方案一中養(yǎng)殖區(qū)的面積
;
(2)求方案二中養(yǎng)殖區(qū)的最大面積(用
表示);
(3)為使養(yǎng)殖區(qū)的面積最大,應(yīng)選擇何種方案?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某省新課改后某校為預(yù)測(cè)2020屆高三畢業(yè)班的本科上線(xiàn)情況,從該校上一屆高三(1)班到高三(5)班隨機(jī)抽取50人,得到各班抽取的人數(shù)和其中本科上線(xiàn)人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計(jì)圖.
![]()
(1)根據(jù)條形統(tǒng)計(jì)圖,估計(jì)本屆高三學(xué)生本科上線(xiàn)率.
(2)已知該省甲市2020屆高考考生人數(shù)為4萬(wàn),假設(shè)以(1)中的本科上線(xiàn)率作為甲市每個(gè)考生本科上線(xiàn)的概率.
(i)若從甲市隨機(jī)抽取10名高三學(xué)生,求恰有8名學(xué)生達(dá)到本科線(xiàn)的概率(結(jié)果精確到0.01);
(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬(wàn),假設(shè)該市每個(gè)考生本科上線(xiàn)率均為
,若2020屆高考本科上線(xiàn)人數(shù)乙市的均值不低于甲市,求p的取值范圍.
可能用到的參考數(shù)據(jù):取
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的左、右焦點(diǎn)為別為F1、F2,且過(guò)點(diǎn)
和
.
![]()
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,點(diǎn)A為橢圓上一位于x軸上方的動(dòng)點(diǎn),AF2的延長(zhǎng)線(xiàn)與橢圓交于點(diǎn)B,AO的延長(zhǎng)線(xiàn)與橢圓交于點(diǎn)C,求△ABC面積的最大值,并寫(xiě)出取到最大值時(shí)直線(xiàn)BC的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線(xiàn)
的參數(shù)方程為
(
為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)C的極坐標(biāo)方程為
.
(1)求直線(xiàn)
的極坐標(biāo)方程及曲線(xiàn)C的直角坐標(biāo)方程;
(2)若
是直線(xiàn)
上的一點(diǎn),
是曲線(xiàn)C上的一點(diǎn),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xlnx,
(1)求函數(shù)f(x)過(guò)(﹣1,﹣2)的切線(xiàn)的方程
(2)過(guò)點(diǎn)P(1,t)存在兩條直線(xiàn)與曲線(xiàn)y=f(x)相切,求t的取值范圍
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com