【題目】已知點(diǎn)
為拋物線
的焦點(diǎn),
為拋物線
上三點(diǎn),且點(diǎn)
在第一象限,直線
經(jīng)過點(diǎn)
與拋物線
在點(diǎn)
處的切線平行,點(diǎn)
為
的中點(diǎn).
(1)證明:
與
軸平行;
(2)求
面積
的最小值.
【答案】(1)見解析.
(2)16.
【解析】
(1)設(shè)出A,B,D三點(diǎn)坐標(biāo),根據(jù)kBD=y′
列方程.根據(jù)根與系數(shù)的關(guān)系求出M的橫坐標(biāo)即可;
(2)求出直線BD的方程,求出AM和B到直線AM的距離,則S△ABD=2S△ABM,求出S關(guān)于xA的函數(shù),利用基本不等式求出函數(shù)的最小值.
(1)證明:設(shè)
,
.
由
得
,又
,所以
,即
,
故
與
軸平行.
(2)法一:由
共線可得
,
所以
,
因
,所以
,即
.
直線
的方程為
,
所以
.
由(1)得
,
當(dāng)且僅當(dāng)
,即
時(shí)等號(hào)成立,故
的最小值為16.
法二:直線
的方程為
,
.
得
,
則
.
設(shè)直線
,代入
得
,
則
,故
時(shí)等號(hào)成立).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)
為極點(diǎn),以
軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長度單位,已知直線
的參數(shù)方程為
(
為參數(shù),
),曲線
的極坐標(biāo)方程為
.
(1)若
,求直線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)設(shè)直線
與曲線
相交于
,
兩點(diǎn),當(dāng)
變化時(shí),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修44:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系
中,傾斜角為
的直線
的參數(shù)方程為
(![]()
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)
方程是
.
(1)寫出直線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)已知點(diǎn)
.若點(diǎn)
的極坐標(biāo)為
,直線
經(jīng)過點(diǎn)
且與曲線
相交于
兩點(diǎn),求
兩點(diǎn)間的距離
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
過點(diǎn)
.
(1)求橢圓
的方程,并求其離心率;
(2)過點(diǎn)
作
軸的垂線
,設(shè)點(diǎn)
為第四象限內(nèi)一點(diǎn)且在橢圓
上(點(diǎn)
不在直線
上),點(diǎn)
關(guān)于
的對(duì)稱點(diǎn)為
,直線
與
交于另一點(diǎn)
.設(shè)
為原點(diǎn),判斷直線
與直線
的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC-
中,
⊥平面ABC,AC⊥AB,AB=AC=2,C
=4,D為BC的中點(diǎn)
![]()
(I)求證:AC⊥平面AB
;
(II)求證:
C∥平面AD
;
(III)求平面
與平面
所成銳二面角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,直線
,圓
.以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.
(1)求
的極坐標(biāo)方程;
(2)若直線
的極坐標(biāo)方程為
,設(shè)
與
的交點(diǎn)為
、
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)若函數(shù)
的圖像與
軸無交點(diǎn),求
的取值范圍;
(2)若方程
在區(qū)間
上存在實(shí)根,求
的取值范圍;
(3)設(shè)函數(shù)
,
,當(dāng)
時(shí)若對(duì)任意的
,總存在
,使得
,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com