【題目】在一個(gè)不透明的盒子中,放有標(biāo)號(hào)分別為
,
,
,
的四個(gè)大小相同的小球,現(xiàn)從這個(gè)盒子中,有放回地先后取得兩個(gè)小球,其標(biāo)號(hào)分別為
,
.
(1)求事件
的概率;
(2)求事件
的概率.
【答案】(1)
;(2)
.
【解析】
試題分析:(1)本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件是從盒子中有放回地先后抽取兩張卡片列舉出來(lái)共包含基本事件
個(gè),滿(mǎn)足條件的事件根據(jù)前面列舉出的事件,得到有
個(gè)結(jié)果,根據(jù)概率公
式得到概率;(2)本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件是從盒子中有放回地先后抽取兩張卡片列舉出來(lái)共包含基本事件
個(gè),滿(mǎn)足條件的事件數(shù)可以通過(guò)前面的列舉得到,根據(jù)等可能事件的概率得到結(jié)果.
試題解析:
取值有
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,共16種.
(1)其中
的有4種,
所以
.
(2)
,所以
時(shí),有
,
兩種.
所以
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】pH值是水溶液的重要理化參數(shù)。若溶液中氫離子的濃度為[H
](單位:mol/l),則其pH值為-lg[H
]。在標(biāo)準(zhǔn)溫度和氣壓下,若水溶液pH=7,則溶液為中性,pH<7時(shí)為酸性,pH>7時(shí)為堿性。例如,甲溶液中氫離子濃度為0.0001mol/l,其pH為-1g 0.0001,即pH=4。已知乙溶液的pH=2,則乙溶液中氫離子濃度為______mol/l。若乙溶液中氫離子濃度是丙溶液的兩千萬(wàn)倍,則丙溶液的酸堿性為______(填中性、酸性或堿性)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
外的有一點(diǎn)
,過(guò)點(diǎn)
作直線(xiàn)
.
(1)當(dāng)直線(xiàn)
過(guò)圓心
時(shí),求直線(xiàn)
的方程;
(2)當(dāng)直線(xiàn)
與圓
相切時(shí),求直線(xiàn)
的方程;
(3)當(dāng)直線(xiàn)
的傾斜角為
時(shí),求直線(xiàn)
被圓
所截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某玩具生產(chǎn)公司每天計(jì)劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共100個(gè),生產(chǎn)一個(gè)衛(wèi)兵需5分鐘,生產(chǎn)一個(gè)騎兵需7分鐘,生產(chǎn)一個(gè)傘兵需4分鐘,已知總生產(chǎn)時(shí)間不超過(guò)10小時(shí),若生產(chǎn)一個(gè)衛(wèi)兵可獲利潤(rùn)5元,生產(chǎn)一個(gè)騎兵可獲利潤(rùn)6元,生產(chǎn)一個(gè)傘兵可獲利潤(rùn)3元.
(1)用每天生產(chǎn)的衛(wèi)兵個(gè)數(shù)
與騎兵個(gè)數(shù)
表示每天的利潤(rùn)
(元);
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù)
,使函數(shù)
在
上有最小值2?若存在,求出
的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,其中
為大于零的常數(shù).
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)求函數(shù)
在區(qū)間
上的最小值;
(3)求證:對(duì)于任意的
時(shí),都有
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱(chēng)之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱(chēng)之為鱉臑.如圖,網(wǎng)格紙上正方形小格的邊長(zhǎng)為1,圖中粗線(xiàn)畫(huà)出的是某幾何體毛坯的三視圖,第一次切削,將該毛坯得到一個(gè)表面積最大的長(zhǎng)方體;第二次切削沿長(zhǎng)方體的對(duì)角面刨開(kāi),得到兩個(gè)三棱柱;第三次切削將兩個(gè)三棱柱分別沿棱和表面的對(duì)角線(xiàn)刨開(kāi)得到兩個(gè)鱉臑和兩個(gè)陽(yáng)馬,則陽(yáng)馬與鱉臑的體積之比為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
.
(1)求證:對(duì)任意實(shí)數(shù)
,該圓恒過(guò)一定點(diǎn);
(2)若該圓與圓
外切,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的中心在原點(diǎn)
,焦點(diǎn)在
軸上,離心率為
,右焦點(diǎn)到右頂點(diǎn)的距離為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)是否存在與橢圓
交于
兩點(diǎn)的直線(xiàn)
,使得
成立?若存在,求出實(shí)數(shù)
的取值范圍,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com