【題目】已知函數(shù)
.
(Ⅰ)當(dāng)
時,解不等式
;
(Ⅱ)若
,對任意
都有
恒成立,求實數(shù)
的取值范圍.
【答案】(Ⅰ) (∞,5)∪(1,+∞);(Ⅱ)(0,6]
【解析】
(Ⅰ)由題知當(dāng)a=1時,不等式
等價于|x+3|+|x+1|>6,根據(jù)絕對值的幾何意義能求出不等式
的解集.
(Ⅱ) 由
,對任意
都有
,只需f(x)的最小值大于等于
的最大值即可,轉(zhuǎn)化成函數(shù)最值問題建立不等關(guān)系式,由此能求出a的取值范圍.
(Ⅰ)∵函數(shù)
,
∴當(dāng)a=1時,不等式
等價于|x+3|+|x+1|>6,
根據(jù)絕對值的幾何意義:
|x+3|+|x+1|>6可以看作數(shù)軸上的點x到點3和點1的距離之和大于6,
則點x到點3和點1的中點O的距離大于3即可,
∴點x在5或其左邊及1或其右邊,
即x<5或x>1.
∴不等式
的解集為(∞,5)∪(1,+∞).
(Ⅱ) ∵
,對任意
都有
,
只需f(x)的最小值大于等于
的最大值即可.
由
可得,
,
設(shè)
,根據(jù)二次函數(shù)性質(zhì),
,
∴
,
解得
,
又
,
∴![]()
∴a的取值范圍是(0,6].
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐
中,
為等邊三角形,
,
面積是
面積的兩倍,點
在側(cè)棱
上.
![]()
(1)若
,證明:平面
平面
;
(2)若二面角
的大小為
,且
為
的中點,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
,其焦點到準(zhǔn)線的距離為2,直線
與拋物線
交于
,
兩點,過
,
分別作拋物線
的切線
,
,
與
交于點
.
(Ⅰ)求
的值;
(Ⅱ)若
,求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
中,
是正三角形,四邊形
是菱形,點
是
的中點.
![]()
(I)求證:
// 平面
;
(II)若平面
平面
,
, 求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為調(diào)查高二年級學(xué)生的身高情況,按隨機抽樣的方法抽取80名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高(單位:
)在
內(nèi)的男生人數(shù)有16人.
![]()
(Ⅰ)求在抽取的學(xué)生中,男女生各有多少人?
(Ⅱ)根據(jù)頻率分布直方圖,完成下列的
列聯(lián)表,并判斷能有多大(百分之幾)的把握認(rèn)為“身高與性別有關(guān)”?
|
| 總計 | |
男生人數(shù) | |||
女生人數(shù) | |||
總計 |
附:參考公式和臨界值表:
,
| 5.024 | 6.635 | 7.879 | 10.828 |
| 0.025 | 0.010 | 0.005 | 0.001 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】石嘴山市第三中學(xué)高三年級統(tǒng)計學(xué)生的最近20次數(shù)學(xué)周測成績(滿分150分),現(xiàn)有甲乙兩位同學(xué)的20次成績?nèi)缜o葉圖所示:
![]()
(1)根據(jù)莖葉圖求甲乙兩位同學(xué)成績的中位數(shù),并將同學(xué)乙的成績的頻率分布直方圖填充完整;
(2)根據(jù)莖葉圖比較甲乙兩位同學(xué)數(shù)學(xué)成績的平均值及穩(wěn)定程度(不要求計算出具體值,給出結(jié)論即可);
(3)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績中任意選出2個成績,記事件
為“其中2個成績分別屬于不同的同學(xué)”,求事件
發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從1到9的九個數(shù)字中取三個偶數(shù)四個奇數(shù),試問:
(1)能組成多少個沒有重復(fù)數(shù)字的七位數(shù)?
(2)上述七位數(shù)中三個偶數(shù)排在一起的有幾個?
(3)在(1)中的七位數(shù)中,偶數(shù)排在一起、奇數(shù)也排在一起的有幾個?
(4)在(1)中任意兩偶數(shù)都不相鄰的七位數(shù)有幾個?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹腻涹w,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”(已知1丈為10尺)該鍥體的三視圖如圖所示,則該鍥體的體積為( )
![]()
A. 12000立方尺B. 11000立方尺
C. 10000立方尺D. 9000立方尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+ax﹣1(a∈R).
(Ⅰ)當(dāng)a=1時,求f(x)>0的解集;
(Ⅱ)對于任意x∈R,不等式f(x)<0恒成立,求a的取值范圍;
(Ⅲ)求關(guān)于x的不等式f(x)<0的解集.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com