【題目】已知曲線
的參數(shù)方程為
(
為參數(shù)),
,
為曲線
上的一動(dòng)點(diǎn).
(I)求動(dòng)點(diǎn)
對(duì)應(yīng)的參數(shù)從
變動(dòng)到
時(shí),線段
所掃過(guò)的圖形面積;
(Ⅱ)若直線
與曲線
的另一個(gè)交點(diǎn)為
,是否存在點(diǎn)
,使得
為線段
的中點(diǎn)?若存在,求出點(diǎn)
坐標(biāo);若不存在,說(shuō)明理由.
【答案】(Ⅰ)
;(Ⅱ)存在點(diǎn)
滿足題意,且
.
【解析】
(Ⅰ)先判斷出線段
所掃過(guò)的圖形由一三角形和一弓形組成,然后通過(guò)分析圖形的特征并結(jié)合扇形的面積可得所求.(Ⅱ)設(shè)
,由題意得
,然后根據(jù)點(diǎn)
在曲線
上求出
后可得點(diǎn)的坐標(biāo).
(Ⅰ)設(shè)
時(shí)對(duì)應(yīng)的點(diǎn)為
時(shí)對(duì)應(yīng)的點(diǎn)為
,由題意得
軸,
則線段
掃過(guò)的面積
.
(Ⅱ)設(shè)
,
,
∵
為線段
的中點(diǎn),
∴
,
∵
在曲線
上,曲線
的直角坐標(biāo)方程為
,
∴
,
整理得
,
∴
,
∴
,
∴存在點(diǎn)
滿足題意,且點(diǎn)的坐標(biāo)為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)數(shù)m取什么值時(shí),復(fù)平面內(nèi)表示復(fù)數(shù)z=(m2-8m+15)+(m2-5m-14)i的點(diǎn).
(1)位于第四象限?
(2)位于第一、三象限?
(3)位于直線y=x上?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙兩種商品,經(jīng)營(yíng)銷售這兩種商品所能獲得的利潤(rùn)依次是P(萬(wàn)元)和Q(萬(wàn)元),它們與投入資金x(萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式:P=
,Q=
.今有3萬(wàn)元資金投入經(jīng)營(yíng)甲、乙兩種商品,為獲得最大利潤(rùn),對(duì)甲、乙兩種商品的資金投入分別應(yīng)為多少?能獲得的最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市環(huán)保部門對(duì)該市市民進(jìn)行了一次垃圾分類知識(shí)的網(wǎng)絡(luò)問(wèn)卷調(diào)查,每位市民僅有一次參加機(jī)會(huì),通過(guò)隨機(jī)抽樣,得到參與問(wèn)卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:
組別 |
|
|
|
|
|
|
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 10 | 7 | 13 |
(1)若規(guī)定問(wèn)卷得分不低于70分的市民稱為“環(huán)保關(guān)注者”,請(qǐng)完成答題卡中的
列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過(guò)0.05的前提下,認(rèn)為是否為“環(huán)保關(guān)注者”與性別有關(guān)?
(2)若問(wèn)卷得分不低于80分的人稱為“環(huán)保達(dá)人”.視頻率為概率.
①在我市所有“環(huán)保達(dá)人”中,隨機(jī)抽取3人,求抽取的3人中,既有男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率;
②為了鼓勵(lì)市民關(guān)注環(huán)保,針對(duì)此次的調(diào)查制定了如下獎(jiǎng)勵(lì)方案:“環(huán)保達(dá)人”獲得兩次抽獎(jiǎng)活動(dòng);其他參與的市民獲得一次抽獎(jiǎng)活動(dòng).每次抽獎(jiǎng)獲得紅包的金額和對(duì)應(yīng)的概率.如下表:
紅包金額(單位:元) | 10 | 20 |
概率 |
|
|
現(xiàn)某市民要參加此次問(wèn)卷調(diào)查,記
(單位:元)為該市民參加間卷調(diào)查獲得的紅包金額,求
的分布列及數(shù)學(xué)期望.
附表及公式:![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的離心率為
,其左頂點(diǎn)
在圓
上.
![]()
(1)求橢圓
的方程;
(2)若點(diǎn)
為橢圓
上不同于點(diǎn)
的點(diǎn),直線
與圓
的另一個(gè)交點(diǎn)為
.是否存在點(diǎn)
,使得
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合![]()
,如果對(duì)于
的每一個(gè)含有![]()
個(gè)元素的子集
,
中必有
個(gè)元素的和等于
,稱正整數(shù)
為集合
的一個(gè)“相關(guān)數(shù)”
(1)當(dāng)
時(shí),判斷
和
是否為集合
的“相關(guān)數(shù)”,說(shuō)明理由;
(2)若
為集合
的“相關(guān)數(shù)”,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線
的右頂點(diǎn)到其一條漸近線的距離等于
,拋物線
的焦點(diǎn)與雙曲線
的右焦點(diǎn)重合,則拋物線
上的動(dòng)點(diǎn)
到直線
和
距離之和的最小值為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
.
(Ⅰ)若
是函數(shù)
的一個(gè)極值點(diǎn),求實(shí)數(shù)
的值及
在
內(nèi)的最小值;
(Ⅱ)當(dāng)
時(shí),求證:函數(shù)
存在唯一的極小值點(diǎn)
,且
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A
經(jīng)過(guò)定點(diǎn)
,且與直線
相切,設(shè)動(dòng)圓圓心
的軌跡為曲線
.
(1)求曲線
的方程;
(2)設(shè)過(guò)點(diǎn)
的直線
,
分別與曲線
交于
,
兩點(diǎn),直線
,
的斜率存在,且傾斜角互補(bǔ),證明:直線
的斜率為定值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com