【題目】某市縣鄉(xiāng)教師流失現(xiàn)象非常嚴(yán)重,為了縣鄉(xiāng)孩子們能接受良好教育,某市今年要為兩所縣鄉(xiāng)中學(xué)招聘儲備未來三年的教師,現(xiàn)在每招聘一名教師需要1萬元,若三年后教師嚴(yán)重短缺時(shí)再招聘,由于各種因素,則每招聘一名教師需要3萬元,已知現(xiàn)在該市縣鄉(xiāng)中學(xué)無多余教師,為決策應(yīng)招聘多少縣鄉(xiāng)教師搜集并整理了該市50所縣鄉(xiāng)中學(xué)在過去三年內(nèi)的教師流失數(shù),得到如表的頻率分布表:
流失教師數(shù) | 6 | 7 | 8 | 9 |
頻數(shù) | 10 | 15 | 15 | 10 |
以這50所縣鄉(xiāng)中學(xué)流失教師數(shù)的頻率代替一所縣鄉(xiāng)中學(xué)流失教師數(shù)發(fā)生的概率,記
表示兩所縣鄉(xiāng)中學(xué)在過去三年共流失的教師數(shù),
表示今年為兩所縣鄉(xiāng)中學(xué)招聘的教師數(shù).為保障縣鄉(xiāng)孩子教育不受影響,若未來三年內(nèi)教師有短缺,則第四年馬上招聘.
(1)求
的分布列;
(2)若要求
,確定
的最小值;
(3)以未來四年內(nèi)招聘教師所需費(fèi)用的期望值為決策依據(jù),在
與
之中選其一,應(yīng)選用哪個(gè)?
【答案】(1)見解析(2)15(3)![]()
【解析】【試題分析】(1)先由頻率及計(jì)算出概率,兩所學(xué)校流失教師數(shù)
可能取值為
,利用相互獨(dú)立事件的概率計(jì)算公式計(jì)算出分布列.(2)由(1)易求得
的最小值為15.(3)分別計(jì)算出
時(shí),招聘教師所需費(fèi)用的期望值,通過對比期望值確定選
較為合適.
【試題解析】
解:(1)由頻數(shù)分布表中教師流失頻率代替教師流失概率可得,一所縣鄉(xiāng)中學(xué)在三年內(nèi)流失的教師數(shù)為6,7,8,9的概率分別為0.2,0.3,0.3,0.2.
所有可能的取值為:12,13,14,15,16,17,18,
且
,
,
,
,
,
,
,
所以
的分布列為:
| 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| 0.04 | 0.12 | 0.21 | 0.26 | 0.21 | 0.12 | 0.04 |
(2)由(1)知
,
,
故
的最小值為15.
(3)記
表示兩所縣鄉(xiāng)中學(xué)未來四年內(nèi)在招聘教師上所需的費(fèi)用(單位:萬元).
當(dāng)
時(shí),
的分布列為:
| 15 | 18 | 21 | 24 |
| 0.63 | 0.21 | 0.12 | 0.04 |
;
當(dāng)
時(shí),
的分布列為:
| 16 | 19 | 22 |
| 0.84 | 0.12 | 0.04 |
.
可知當(dāng)
時(shí)所需費(fèi)用的期望值小于
時(shí)所需費(fèi)用的期望值,故應(yīng)選
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,已知直線
的參數(shù)方程為
(
為參數(shù)),曲線
的極坐標(biāo)方程是
.
(1)寫出直線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)設(shè)直線
與曲線
相交于
兩點(diǎn),點(diǎn)
為
的中點(diǎn),點(diǎn)
的極坐標(biāo)為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)每年暑假舉行“學(xué)科思維講座”活動,每場講座結(jié)束時(shí),所有聽講這都要填寫一份問卷調(diào)查.2017年暑假某一天五場講座收到的問卷份數(shù)情況如下表:
學(xué)科 | 語文 | 數(shù)學(xué) | 英語 | 理綜 | 文綜 |
問卷份數(shù) |
|
|
|
|
|
用分層抽樣的方法從這一天的所有問卷中抽取
份進(jìn)行統(tǒng)計(jì),結(jié)果如下表:
滿意 | 一般 | 不滿意 | |
語文 |
|
|
|
數(shù)學(xué) |
| 1 |
|
英語 |
|
|
|
理綜 |
|
|
|
文綜 |
|
|
|
(1)估計(jì)這次講座活動的總體滿意率;
(2)求聽數(shù)學(xué)講座的甲某的調(diào)查問卷被選中的概率;
(3)若想從調(diào)查問卷被選中且填寫不滿意的人中再隨機(jī)選出
人進(jìn)行家訪,求這
人中選擇的是理綜講座的人數(shù)的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱
中,底面為等腰直角三角形,
,
, 若
、
、
別是棱
、
、
的中點(diǎn),則下列四個(gè)命題:
;
②三棱錐
的外接球的表面積為
;
③三棱錐
的體積為
;
④直線
與平面
所成角為![]()
其中正確的命題有__________.(把所有正確命題的序號填在答題卡上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系
有相同的長度單位,曲線
的極坐標(biāo)方程為
.
(1)求直線
的普通方程和曲線
的直角坐標(biāo)方程;
(2)設(shè)曲線
與直線
交于
、
兩點(diǎn),且
點(diǎn)的坐標(biāo)為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
的底面
是直角梯形,
,
,
,點(diǎn)
在線段
上,且
,
,
平面
.
![]()
(1)求證:平面
平面
;
(2)當(dāng)四棱錐
的體積最大時(shí),求平面
與平面
所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
是拋物線
的對稱軸與準(zhǔn)線的交點(diǎn),點(diǎn)
為拋物線的焦點(diǎn),
在拋物線上且滿足
,當(dāng)
取最大值時(shí),點(diǎn)
恰好在以
,
為焦點(diǎn)的雙曲線上,則雙曲線的離心率為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知梯形
如圖(1)所示,其中
,
,四邊形
是邊長為
的正方形,現(xiàn)沿
進(jìn)行折疊,使得平面
平面
,得到如圖(2)所示的幾何體.
![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)已知點(diǎn)
在線段
上,且
平面
,求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的一個(gè)焦點(diǎn)與拋物線
的焦點(diǎn)重合,且過點(diǎn)
.過點(diǎn)
的直線
交橢圓
于
,
兩點(diǎn),
為橢圓的左頂點(diǎn).
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)求
面積的最大值,并求此時(shí)直線
的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com