科目: 來源: 題型:
【題目】設(shè)數(shù)列
的前n項和為
,已知
,
,
.
(1)證明:
為等比數(shù)列,求出
的通項公式;
(2)若
,求
的前n項和
,并判斷是否存在正整數(shù)n使得
成立?若存在求出所有n值;若不存在說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義:首項為
且公比為正數(shù)的等比數(shù)列為“
數(shù)列”.
(Ⅰ)已知等比數(shù)列
(
)滿足:
,
,判斷數(shù)列
是否為“
數(shù)列”;
(Ⅱ)設(shè)
為正整數(shù),若存在“
數(shù)列”
(
),
對任意不大于
的正整數(shù)
,都有
成立,求
的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
的離心率為
,過點
的直線
與
有兩個不同的交點
,線段
的中點為
,
為坐標(biāo)原點,直線
與直線
分別交直線
于點
.
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)求線段
的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】現(xiàn)有3名醫(yī)生,5名護(hù)士、2名麻醉師.
(1)從中選派1名去參加外出學(xué)習(xí),有多少種不同的選法?
(2)從這些人中選出1名醫(yī)生、1名護(hù)士和1名麻醉師組成1個醫(yī)療小組,有多少種不同的選法?
查看答案和解析>>
科目: 來源: 題型:
【題目】為了響應(yīng)國家號召,某校組織部分學(xué)生參與了“垃圾分類,從我做起”的知識問卷作答,并將學(xué)生的作答結(jié)果分為“合格”與“不合格”兩類與“問卷的結(jié)果”有關(guān)?
不合格 | 合格 | |
男生 | 14 | 16 |
女生 | 10 | 20 |
(1)是否有90%以上的把握認(rèn)為“性別”與“問卷的結(jié)果”有關(guān)?
(2)在成績合格的學(xué)生中,利用性別進(jìn)行分層抽樣,共選取9人進(jìn)行座談,再從這9人中隨機(jī)抽取5人發(fā)送獎品,記拿到獎品的男生人數(shù)為X,求X的分布列及數(shù)學(xué)期望
.
附:![]()
| 0.100 | 0.050 | 0.010 | 0.001 |
| 2.703 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】中國有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長方體、正方體或圓柱體,但南北朝時期的官員獨(dú)孤信的印信形狀是“半正多面體”(圖1).半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對稱美.圖2是一個棱數(shù)為48的半正多面體,它的所有頂點都在同一個正方體的表面上,且此正方體的棱長為1.則該半正多面體共有________個面,其棱長為_________.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】德國著名數(shù)學(xué)家狄利克雷(Dirichlet,1805~1859)在數(shù)學(xué)領(lǐng)域成就顯著.19世紀(jì),狄利克雷定義了一個“奇怪的函數(shù)”
其中R為實數(shù)集,Q為有理數(shù)集.則關(guān)于函數(shù)
有如下四個命題,正確的為( )
A.函數(shù)
是偶函數(shù)
B.
,
,
恒成立
C.任取一個不為零的有理數(shù)T,
對任意的
恒成立
D.不存在三個點
,
,
,使得
為等腰直角三角形
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)
.
(1)當(dāng)
時,求函數(shù)
在點
處的切線方程;
(2)若函數(shù)
存在兩個零點
.
①實數(shù)
的取值范圍;
②證明:
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com