科目: 來源: 題型:
【題目】某市據(jù)實際情況主要采取以下四種扶貧方式:第一,以工代賑方式,指政府投資建設(shè)基礎(chǔ)設(shè)施工程,組織貧困地區(qū)群眾參加工程建設(shè)并獲得勞務(wù)報酬,第二,整村推進(jìn)方式指以貧困村為具體幫扶對象,幫扶對口到村,資金安排到村,扶貧效益到戶,第三,科技扶貧方式,指組織科技人員深入貧困鄉(xiāng)村實地指導(dǎo)、技術(shù)培訓(xùn)等傳授科技知識,第四,移民搬遷方式,指對目前極少數(shù)居住在生存條件惡劣、自然資源貧乏地區(qū)的特困人口,實行自愿移民,該市為了2020年更好的完成精準(zhǔn)扶貧各項任務(wù),2020年初在全市貧困戶(分一般貧困戶和“五特”戶兩類)中隨機(jī)抽取了5000戶就目前的主要四種扶貧方式行了問卷調(diào)查,支持每種扶貧方式的結(jié)果如表:
調(diào)查的貧困戶 | 支持以工代賑戶數(shù) | 支持整村推進(jìn)戶數(shù) | 支持科技扶貧戶數(shù) | 支持移民搬遷戶數(shù) |
一般貧困戶 | 1200 | 1600 |
| 200 |
五特戶(五保戶和特困戶) | 100 |
|
| 100 |
已知在被調(diào)查的5000戶中隨機(jī)抽取一戶支持整村推進(jìn)的概率為0.36.
(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的貧困戶中抽取50戶進(jìn)行深入訪談,問應(yīng)在支持科技扶貧戶數(shù)中抽取多少戶?
(Ⅱ)雖然“五特”戶在全市的貧困戶所占比例不大,但本次調(diào)查要有意義,其中這次調(diào)查的“五特”戶戶數(shù)不能低于被調(diào)查總戶數(shù)的9.2%,已知
,求本次調(diào)查有意義的概率是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓
過點
且橢圓的短軸長為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知動直線
過右焦點
,且與橢圓
分別交于
兩點.試問
軸上是否存在定點
,使得,
恒成立?若存在求出點
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù),
).以坐標(biāo)原點為極點,
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,射線
與曲線
交于
兩點,直線
與曲線
相交于
兩點.
(Ⅰ)求直線
的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)當(dāng)
時,求
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】袋子中有四張卡片,分別寫有“學(xué)、習(xí)、強(qiáng)、國”四個字,有放回地從中任取一張卡片,將三次抽取后“學(xué)”“習(xí)”兩個字都取到記為事件
,用隨機(jī)模擬的方法估計事件
發(fā)生的概率,利用電腦隨機(jī)產(chǎn)生整數(shù)0,1,2,3四個隨機(jī)數(shù),分別代表“學(xué)、習(xí)、強(qiáng)、國”這四個字,以每三個隨機(jī)數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):
232 | 321 | 210 | 023 | 123 | 021 | 132 | 220 | 001 |
231 | 130 | 133 | 231 | 031 | 320 | 122 | 103 | 233 |
由此可以估計事件
發(fā)生的概率為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】我區(qū)的中小學(xué)辦學(xué)條件在政府的教育督導(dǎo)下,迅速得到改變.督導(dǎo)一年后.分別隨機(jī)抽查了高中(用
表示)與初中(用
表示)各10所學(xué)校.得到相關(guān)指標(biāo)的綜合評價得分(百分制)的莖葉圖如圖所示.則從莖葉圖可得出正確的信息為(80分及以上為優(yōu)秀)( )
①高中得分與初中得分的優(yōu)秀率相同
②高中得分與初中得分的中位數(shù)相同
③高中得分的方差比初中得分的方差大
④高中得分與初中得分的平均分相同
![]()
A.①②B.①③C.②④D.③④
查看答案和解析>>
科目: 來源: 題型:
【題目】已知
,
,動點
滿足直線
與直線
的斜率之積為
,設(shè)點
的軌跡為曲線
.
(1)求曲線
的方程;
(2)若過點
的直線
與曲線
交于
,
兩點,過點
且與直線
垂直的直線與
相交于點
,求
的最小值及此時直線
的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】這次新冠肺炎疫情,是新中國成立以來在我國發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經(jīng)歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長,從磨難中奮起.在這次疫情中,全國人民展現(xiàn)出既有責(zé)任擔(dān)當(dāng)之勇、又有科學(xué)防控之智.某校高三學(xué)生也展開了對這次疫情的研究,一名同學(xué)在數(shù)據(jù)統(tǒng)計中發(fā)現(xiàn),從2020年2月1日至2月7日期間,日期
和全國累計報告確診病例數(shù)量
(單位:萬人)之間的關(guān)系如下表:
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
全國累計報告確診病例數(shù)量 | 1.4 | 1.7 | 2.0 | 2.4 | 2.8 | 3.1 | 3.5 |
(1)根據(jù)表中的數(shù)據(jù),運(yùn)用相關(guān)系數(shù)進(jìn)行分析說明,是否可以用線性回歸模型擬合
與
的關(guān)系?
(2)求出
關(guān)于
的線性回歸方程
(系數(shù)精確到0.01).并預(yù)測2月10日全國累計報告確診病例數(shù).
參考數(shù)據(jù):
,
,
,
.
參考公式:相關(guān)系數(shù)![]()
回歸方程
中斜率和截距的最小二乘估計公式分別為:
,
.
查看答案和解析>>
科目: 來源: 題型:
【題目】某貧困地區(qū)幾個丘陵的外圍有兩條相互垂直的直線型公路
,以及鐵路線上的一條應(yīng)開鑿的直線穿山隧道
,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計劃修建一條連接兩條公路
和山區(qū)邊界的直線型公路
, 以
所在的直線分別為
軸,
軸, 建立平面直角坐標(biāo)系
, 如圖所示, 山區(qū)邊界曲線為
,設(shè)公路
與曲線
相切于點
,
的橫坐標(biāo)為
.
![]()
(1)當(dāng)
為何值時,公路
的長度最短?求出最短長度;
(2)當(dāng)公路
的長度最短時,設(shè)公路
交
軸,
軸分別為
,
兩點,并測得四邊形
中,
,
,
千米,
千米,求應(yīng)開鑿的隧道
的長度.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com