分析 根據(jù)題意畫出圖形,分兩種情況討論:(1)當(dāng)DF=5m時;(2)當(dāng)DF=4m時.證出AD=DF,求出AD的長,根據(jù)三角函數(shù)和勾股定理求出DE的長,計算面積即可.
解答
解:(1)如圖1,當(dāng)DF=5m時,
∵AB∥CD,
∴∠1=∠3,
∵∠2=∠3,
∴∠1=∠2,
∴AD=DF=5m,
∵cos∠DAB=$\frac{3}{5}$,
∴$\frac{AE}{AD}$=$\frac{3}{5}$,
∴$\frac{AE}{5}$=$\frac{3}{5}$,
∴AE=3,
在Rt△AED中,DE=$\sqrt{{5}^{2}-{3}^{3}}$=4,
S平行四邊形ABCD=9×4=36cm2.![]()
(2)如圖2,當(dāng)DF=4m時,
∵AB∥CD,
∴∠1=∠3,
∵∠2=∠3,
∴∠1=∠2,
∴AD=DF=4m,
∵cos∠DAB=$\frac{3}{5}$,
∴$\frac{AE}{AD}$=$\frac{3}{5}$,
∴$\frac{AE}{4}$=$\frac{3}{5}$,
∴AE=$\frac{12}{5}$,
在Rt△AED中,DE=$\sqrt{{4}^{2}-(\frac{12}{5})^{2}}$=$\frac{16}{5}$,
S平行四邊形ABCD=9×$\frac{16}{5}$=$\frac{144}{5}$cm2.
故答案為36或$\frac{144}{5}$cm2.
點評 本題考查了平行四邊形的性質(zhì),涉及勾股定理、三角函數(shù)、等腰三角形的性質(zhì)等知識,要注意分類討論.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 80千米 | B. | 90千米 | C. | 100千米 | D. | 120千米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 65° | B. | 55° | C. | 45° | D. | 35° |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com