分析 首先根據(jù)AD=2,AE=2$\sqrt{3}$,求出DE的長(zhǎng)是多少;再根據(jù)△DBE為等腰直角三角形,求出BD的長(zhǎng)是多少;然后在△ABD中,根據(jù)余弦定理,求出AB的長(zhǎng)是多少;最后根據(jù)△ABC為等腰直角三角形,求出AC的長(zhǎng)是多少即可.
解答 解:∵AD=2,AE=2$\sqrt{3}$,
∴DE=2+2$\sqrt{3}$,
∵△DBE為等腰直角三角形,
∴BD=(2+2$\sqrt{3}$)÷$\sqrt{2}$=$\sqrt{2}+\sqrt{6}$,∠ADB=45°,
在△ABD中,根據(jù)余弦定理,可得
AB2=AD2+BD2-2AD•BD•cos45°
=22${+(\sqrt{2}+\sqrt{6})}^{2}$$-2×2×(\sqrt{2}+\sqrt{6})$×$\frac{\sqrt{2}}{2}$
=4+8+$4\sqrt{3}$-4-4$\sqrt{3}$
=8
∴AB=2$\sqrt{2}$,
∵△ABC為等腰直角三角形,
∴AC=2$\sqrt{2}×\sqrt{2}$=4,
即AC的長(zhǎng)是4.
點(diǎn)評(píng) 此題主要考查了等腰直角三角形的性質(zhì)和應(yīng)用,要熟練掌握,解答此題的關(guān)鍵是要明確:等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì),還具備等腰三角形和直角三角形的所有性質(zhì).即:兩個(gè)銳角都是45°,斜邊上中線(xiàn)、角平分線(xiàn)、斜邊上的高,三線(xiàn)合一,等腰直角三角形斜邊上的高為外接圓的半徑R,而高又為內(nèi)切圓的直徑.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
| 筐 數(shù) | 2 | 5 | 3 | 4 | 2 | 4 |
| 與標(biāo)準(zhǔn)重量比較(千克) | -0.8 | +0.6 | -0.5 | -0.4 | +0.5 | -0.3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江蘇省七年級(jí)下學(xué)期第一次課堂調(diào)研數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,給出了過(guò)直線(xiàn)外一點(diǎn)作已知直線(xiàn)的平行線(xiàn)的方法,其依據(jù)是____________.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com