分析 (1)先證明△DAB≌△EBC,于是得到∠ADB=∠BEC,由AD∥BC,可知∠ADB=∠DBC,故此∠∠BEC=∠HBC,然后由∠BEC+∠ECB=90°,可得到∠HBC+BCH=90°,故此可知BD⊥EC;
(2)連接AH.先證明△AED、△ABC、△AEM為等腰直角三角形,從而得到AE=$\sqrt{2}$AM,由等腰三角形三線合一的性質可證明AC是ED的垂直平分線,故此DC=EC,然后再證明△AEH∽△CEA,由相似三角形的性質可得到AM2=$\frac{1}{2}$EH•DC.
解答 (1)證明:∵E是AB的中點,且AD=$\frac{1}{2}$AB,
∴AE=AD.
在△DAB和△EBC中,
$\left\{\begin{array}{l}{AD=EB}\\{∠DAB=∠EBC=90°}\\{AB=BC}\end{array}\right.$,
∴△DAB≌△EBC.
∴∠ADB=∠BEC.
∵AD∥BC,
∴∠ADB=∠DBC.
∴∠∠BEC=∠HBC.
∵∠BEC+∠ECB=90°,
∴∠HBC+BCH=90°.
∴D⊥EC.
(2)解:如圖所示,連接AH.![]()
∵E是AB的中點,且AD=$\frac{1}{2}$AB,
∴AE=AD.
∵AB=BC,∠ABC=90°,
∴∠BAC=45°.
∴AC平分∠EAD.
∴AM⊥DE,ME=DM.
∴DC=EC.
∵在Rt△AEM中,∠EAM=45°
∴AE=$\sqrt{2}AM$.
∵EC⊥BD,
∴∠EHD=90°.
∴∠EAD+∠EHD=180°.
∴A、E、H、D四共圓.
∴∠AHE=∠ADE=45°.
∴∠AHE=∠EAC=45°.
又∵∠AEH=∠CEA,
∴△AEH∽△CEA.
∴$\frac{AE}{EH}=\frac{EC}{AE}$,即$\frac{\sqrt{2}AM}{EH}=\frac{DC}{\sqrt{2}AM}$.
∴AM2=$\frac{1}{2}EH•DC$.
點評 本題主要考查的是相似三角形的性質和判定、全等三角形的性質和判定、四點共圓的條件、圓周角定理、等腰直角三角形的性質和判定,連接AH,證明△AEH∽△CEA是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com