分析 (1)先求得四邊形ABCD是正方形,然后根據(jù)正方形的性質(zhì)可得∠EBO=∠FCO=45°,OB=OC,再根據(jù)同角的余角相等可得∠BOE=∠COF,然后利用“角邊角”證明△BOE和△COF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等即可得證;
(2)過(guò)O點(diǎn)作OG⊥BC于G,作OH⊥CD于H,根據(jù)菱形的性質(zhì)可得CA平分∠BCD,∠ABC+∠BCD=180°,求得OG=OH,∠BCD=180°-60°=120°,從而求得∠GOH=∠EOF=60°,再根據(jù)等量減等量可得∠EOG=∠FOH,然后利用“角邊角”證明△EOG和△FOH全等,根據(jù)全等三角形對(duì)應(yīng)邊相等即可得證;
(3)過(guò)O點(diǎn)作OG⊥BC于G,作OH⊥CD于H,先求得四邊形O′GCH是正方形,從而求得GC=O′G=3,∠GO′H=90°,然后利用“角邊角”證明△EO′G和△FO′H全等,根據(jù)全等三角形對(duì)應(yīng)邊相等即可證得△O′EF是等腰直角三角形,根據(jù)已知求得等腰直角三角形的直角邊O′E的長(zhǎng),然后根據(jù)勾股定理求得EG,即可求得CE的長(zhǎng).
解答
(1)△OEF是等腰直角三角形;
證明:如圖1,∵菱形ABCD中,∠ABC=90°,
∴四邊形ABCD是正方形,
∴OB=OC,∠BOC=90°,∠BCD=90°,∠EBO=∠FCO=45°,
∴∠BOE+∠COE=90°,
∵∠MON+∠BCD=180°,
∴∠MON=90°,
∴∠COF+∠COE=90°,
∴∠BOE=∠COF,
在△BOE與△COF中,
$\left\{\begin{array}{l}{∠BOE=∠COF}\\{OB=OC}\\{∠EBO=∠FCO}\end{array}\right.$,
∴△BOE≌△COF(ASA),
∴OE=OF,
∴△OEF是等腰直角三角形;![]()
故答案為等腰直角三角形;
(2)△OEF是等邊三角形;
證明:如圖2,過(guò)O點(diǎn)作OG⊥BC于G,作OH⊥CD于H,
∴∠OGE=∠OGC=∠OHC=90°,
∵四邊形ABCD是菱形,
∴CA平分∠BCD,∠ABC+BCD=180°,
∴OG=OH,∠BCD=180°-60°=120°,
∵∠GOH+∠OGC+∠BCD+∠OHC=360°,
∴∠GOH+∠BCD=180°,
∴∠MON+∠BCD=180°,
∴∠GOH=∠EOF=60°,
∵∠GOH=∠GOF+∠FOH,∠EOF=∠GOF+∠EOG,
∴∠EOG=∠FOH,
在△EOG與△FOH中,
$\left\{\begin{array}{l}{∠EOG=∠FOH}\\{OG=OH}\\{∠EGO=∠FHO}\end{array}\right.$,
∴△EOG≌△FOH(ASA),
∴OE=OF,
∴△OEF是等邊三角形;
(3)證明:如圖3,∵菱形ABCD中,∠ABC=90°,
∴四邊形ABCD是正方形,
∴$\frac{O′C}{AC}$=$\frac{3}{4}$,
過(guò)O點(diǎn)作O′G⊥BC于G,作O′H⊥CD于H,
∴∠O′GC=∠O′HC=∠BCD=90°,
∴四邊形O′GCH是矩形,
∴O′G∥AB,O′H∥AD,
∴$\frac{O′G}{AB}$=$\frac{O′H}{AD}$=$\frac{O′C}{AC}$=$\frac{3}{4}$,
∵AB=BC=CD=AD=4,
∴O′G=O′H=3,
∴四邊形O′GCH是正方形,
∴GC=O′G=3,∠GO′H=90°
∵∠MO′N(xiāo)+∠BCD=180°,
∴∠EO′F=90°,
∴∠EO′F=∠GO′H=90°,
∵∠GO′H=∠GO′F+∠FO′H,∠EO′F=∠GO′F+∠EO′G,
∴∠EO′G=∠FO′H,
在△EO′G與△FO′H中,
$\left\{\begin{array}{l}{∠EO′G=∠FO′H}\\{O′G=O′H}\\{∠EGO′=∠FHO′}\end{array}\right.$,
∴△EO′G≌△FO′H(ASA),
∴O′E=O′F,
∴△O′EF是等腰直角三角形;![]()
∵S正方形ABCD=4×4=16,$\frac{{S}_{△O′EF}}{{S}_{四邊形ABCD}}$=$\frac{9}{8}$,
∴S△O′EF=18,
∵S△O′EF=$\frac{1}{2}$O′E2,
∴O′E=6,
在RT△O′EG中,EG=$\sqrt{O′{E}^{2}-O{′G}^{2}}$=$\sqrt{{6}^{2}-{3}^{2}}$=3$\sqrt{3}$,
∴CE=CG+EG=3+3$\sqrt{3}$.
根據(jù)對(duì)稱(chēng)性可知,當(dāng)∠M′ON′旋轉(zhuǎn)到如圖所示位置時(shí),
CE′=E′G-CG=3$\sqrt{3}$-3.
綜上可得,線段CE的長(zhǎng)為3+3$\sqrt{3}$或3$\sqrt{3}$-3.
點(diǎn)評(píng) 本題考查了正方形的性質(zhì),菱形的性質(zhì),三角形全等的判定和性質(zhì),解決此類(lèi)問(wèn)題的關(guān)鍵是正確的利用旋轉(zhuǎn)不變量.正確作出輔助線是關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
| 時(shí)間x(天) | 1 | 2 | 3 | 4 | … |
| 每天產(chǎn)量y(套) | 22 | 24 | 26 | 28 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | -$\frac{2}{3}$ | C. | -1 | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com