分析 (1)由△ABE與△BCF都為等邊三角形,利用等邊三角形的性質(zhì)得到兩對邊相等,∠ABE=∠CBF=60°,利用等式的性質(zhì)得到夾角相等,利用SAS得到△EBF與△DFC全等;
(2)利用(1)中全等三角形對應邊相等得到EF=AC,再由三角形ADC為等邊三角形得到三邊相等,等量代換得到EF=AD,AE=DF,利用對邊相等的四邊形為平行四邊形得到AEFD為平行四邊形;
(3)①當AE=AD時,ADFE是菱形;
②當∠BAC=150°,由此可求得∠EAD的度數(shù),則可得ADFE是矩形;
③當ADFE是正方形時,∠EAD=90°,且AE=AD,聯(lián)立①②的結(jié)論即可.
解答
解:(1)∵△ABE、△BCF為等邊三角形,
∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°,
∴∠ABE-∠ABF=∠FBC-∠ABF,即∠CBA=∠FBE,
在△ABC和△EBF中,
$\left\{\begin{array}{l}{AB=EB}\\{∠CBA=∠FBE}\\{BC=BF}\end{array}\right.$,
∴△ABC≌△EBF(SAS),
∴EF=AC,
又∵△ADC為等邊三角形,
∴CD=AD=AC,
∴EF=AD=DC,
同理可得△ABC≌△DFC,
∴DF=AB=AE=DF,
∴四邊形AEFD是平行四邊形;
∴∠FEA=∠ADF,
∴∠FEA+∠AEB=∠ADF+∠ADC,即∠FEB=∠CDF,
在△FEB和△CDF中,
$\left\{\begin{array}{l}{EF=DC}\\{∠FEB=∠CDF}\\{EB=FD}\end{array}\right.$.
∴△EBF≌△DFC(SAS),
(2)∵△EBF≌△DFC,
∴EB=DF,EF=DC.
∵△ACD和△ABE為等邊三角形,
∴AD=DC,AE=BE,
∴AD=EF,AE=DF
∴四邊形AEFD是平行四邊形;
(3)①若AB=AC,則平行四邊形AEFD是菱形;
此時AE=AB=AC=AD,即△ABC是等腰三角形;
故△ABC滿足AB=AC時,四邊形AEFD是菱形;
②若∠BAC=150°,則平行四邊形AEFD是矩形;
由(1)知四邊形AEFD是平行四邊形,則∠EAD=90°時,可得平行四邊形AEFD是矩形,
∴∠BAC=360°-60°-60°-90°=150°,
即△ABC滿足∠BAC=150°時,四邊形AEFD是矩形;
③綜合①②的結(jié)論知:當△ABC是頂角∠BAC是150°的等腰三角形時,四邊形AEFD是正方形.
故答案是:①AB=AC;
②∠BAC=150°;
③AB=AC,∠BAC=150°.
點評 考查了平行四邊形及特殊平行四邊形的判定,熟練掌握特殊四邊形的判定方法和性質(zhì)是解答此題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 4π+2$\sqrt{3}$ | B. | $\frac{16}{3}$π-2$\sqrt{3}$ | C. | $\frac{16}{3}$π+2$\sqrt{3}$ | D. | 4π |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | (16+4π,0) | B. | (14+4π,2) | C. | (14+3π,2) | D. | (12+3π,0) |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com