欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.計(jì)算:($\sqrt{2}$-3)0-$\sqrt{9}$+(-1)2014+|-2|+(-$\frac{1}{3}$)-2

分析 原式利用乘方的意義,零指數(shù)冪、負(fù)整數(shù)指數(shù)冪法則,絕對(duì)值的代數(shù)意義化簡(jiǎn),計(jì)算即可得到結(jié)果.

解答 解:原式=1-3+1+2+9=10.

點(diǎn)評(píng) 此題考查了實(shí)數(shù)的運(yùn)算,零指數(shù)冪、負(fù)整數(shù)指數(shù)冪,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在-5,0,-3,6這四個(gè)數(shù)中,絕對(duì)值最小的數(shù)是( 。
A.-3B.0C.-5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.解不等式組:$\left\{\begin{array}{l}3(x-1)≤5x+1\;\\ 2x<\frac{9-x}{4}\;\end{array}\right.$并寫出它的所有整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.(1)計(jì)算:$\sqrt{3}$-|$\sqrt{2}$-$\sqrt{3}$|+$\root{3}{-27}$+$\sqrt{(-2{)^2}}$
(2)解方程組:$\left\{\begin{array}{l}\frac{x}{3}+\frac{y}{2}=0\\ 2(x-4)-3(y-1)=3\end{array}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,小明要測(cè)量河內(nèi)小島B到河邊公路AD的距離,在點(diǎn)A處測(cè)得∠BAD=37°,沿AD方向前進(jìn)150米到達(dá)點(diǎn)C,測(cè)得∠BCD=45°.求小島B到河邊公路AD的距離.
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.若x+y+z=xyz,關(guān)于x,y,z的代數(shù)式x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=kxyz恒成立,求k值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖,以點(diǎn)O為圓心的半圓經(jīng)過(guò)點(diǎn)C,AB為直徑,若AC=BC=$\sqrt{2}$,則圖中陰影部分的面積是$\frac{π}{4}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知:如圖,在梯形ABCD中,AD∥BC,∠ABC=90°,AB=4,AD=8,sin∠BCD=$\frac{4}{5}$,CE平分∠BCD,交邊AD于點(diǎn)E,聯(lián)結(jié)BE并延長(zhǎng),交CD的延長(zhǎng)線于點(diǎn)P.
(1)求梯形ABCD的周長(zhǎng);
(2)求PE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.閱讀下列材料,然后解答問(wèn)題:
在進(jìn)行二次根式的化簡(jiǎn)與運(yùn)算時(shí),我們有時(shí)會(huì)碰上如:$\frac{3}{\sqrt{5}}$,$\sqrt{\frac{2}{3}}$,$\frac{2}{\sqrt{3}+1}$一樣的式子.其實(shí)我們還可以將其進(jìn)一步化簡(jiǎn):
$\frac{3}{\sqrt{5}}$=$\frac{3×\sqrt{5}}{\sqrt{5}×\sqrt{5}}$=$\frac{3\sqrt{5}}{5}$:(一) $\sqrt{\frac{2}{3}}$=$\frac{\sqrt{2×3}}{\sqrt{3×3}}$=$\frac{\sqrt{6}}{3}$:(二)
$\frac{2}{\sqrt{3}+1}$=$\frac{2(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}$=$\frac{2(\sqrt{3}-1)}{(\sqrt{3})^{2}-1}$=$\sqrt{3}-1$:(三)
以上這種化簡(jiǎn)的步驟叫做分母有理化.
$\frac{2}{\sqrt{3}+1}$還可以用以下方法化簡(jiǎn):
$\frac{2}{\sqrt{3}+1}$=$\frac{3-1}{\sqrt{3}+1}$=$\frac{(\sqrt{3})^{2}-1}{\sqrt{3}+1}$=$\frac{(\sqrt{3}+1)(\sqrt{3}-1)}{\sqrt{3}+1}$=$\sqrt{3}-1$.(四)
請(qǐng)解答下列問(wèn)題:
(1)請(qǐng)用不同的方法化簡(jiǎn)$\frac{2}{\sqrt{5}+\sqrt{3}}$.
①參照(三)式得$\frac{2}{\sqrt{5}+\sqrt{3}}$=$\sqrt{5}$-3;
②參照(四)式得$\frac{2}{\sqrt{5}+\sqrt{3}}$=$\frac{(\sqrt{5})^{2}-(\sqrt{3})^{2}}{\sqrt{5}+\sqrt{3}}$=$\frac{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}{\sqrt{5}+\sqrt{3}}$=$\sqrt{5}$-$\sqrt{3}$;
(2)化簡(jiǎn):$\frac{2}{\sqrt{3}+1}$+$\frac{2}{\sqrt{5}+\sqrt{3}}$+$\frac{2}{\sqrt{7}+\sqrt{5}}$;(保留過(guò)程)
(3)猜想:$\frac{1}{\sqrt{3}+1}$+$\frac{1}{\sqrt{5}+\sqrt{3}}$+$\frac{1}{\sqrt{7}+\sqrt{5}}$+…+$\frac{1}{\sqrt{2n+1}+\sqrt{2n-1}}$的值.(直接寫出結(jié)論)

查看答案和解析>>

同步練習(xí)冊(cè)答案