分析 (1)根據(jù)全等三角形對(duì)應(yīng)角相等可得∠A=∠D,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠AOD=∠A+∠AFD,∠AOD=∠D+∠DCA,然后整理即可得解;
(2)根據(jù)全等三角形對(duì)應(yīng)邊相等可得AB=DE,BC=EF,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠ABC=∠DEF,∠BAC=∠EDF,然后推出∠ABF=∠DEC,利用邊角邊證明△ABF與△DEC全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠BAF=∠EDC,再推出∠FAC=∠CDF,然后利用三角形的外角性質(zhì)列式即可得證;
(3)可以證明AO=DO,根據(jù)到線段兩端點(diǎn)距離的點(diǎn)在線段垂直平分線得到BO⊥AD.
解答 解:(1)∵△ABC≌△DEF,
∴∠A=∠D,
又∵∠AOD=∠A+∠AFD,∠AOD=∠D+∠DCA,
∴∠AFD=∠DCA;
故答案為:∠AFD=∠DCA;
(2)∵△ABC≌△DEF,
∴AB=DE,BC=EF,∠ABC=∠DEF,∠BAC=∠EDF,
∴∠ABC-∠FBC=∠DEF-∠FBC,
即∠ABF=∠DEC,
在△ABF與△DEC中,
$\left\{\begin{array}{l}{AB=DE}\\{∠ABF=∠DEC}\\{BF=EC}\end{array}\right.$,
∴△ABF≌△DEC(SAS);
(3)(1)中的結(jié)論還成立,
∵△ABC≌△DEF,
∴AB=DE,BC=EF,∠ABC=∠DEF,
∴∠ABC-∠FBC=∠DEF-∠FBC,
∴∠ABF=∠DEC,
在△ABF和△DEC中,![]()
$\left\{\begin{array}{l}{AB=DE}\\{∠ABF=∠DEC}\\{BF=CE}\end{array}\right.$,
∴△ABF≌△DEC(SAS),
∴AF=CD,∠BAF=∠BDC,
∵∠BAC=∠BDF,
∴∠FAO=∠CDO,
在△AFO與△DCO中,$\left\{\begin{array}{l}{∠FAO=∠CDO}\\{∠AOF=∠DOC}\\{AF=DC}\end{array}\right.$,
∴△AFO≌△DCO,
∴∠AFD=∠DCO,AO=DO,
∴BO⊥AD.
點(diǎn)評(píng) 本題主要考查了全等三角形的判定與性質(zhì),利用旋轉(zhuǎn)變換只改變圖形的位置,不改變圖形的形狀與大小,找出兩三角形全等的條件是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年廣東省東莞市堂星晨學(xué)校七年級(jí)3月月考數(shù)學(xué)試卷(解析版) 題型:填空題
計(jì)算:
______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年廣東省東莞市堂星晨學(xué)校七年級(jí)3月月考數(shù)學(xué)試卷(解析版) 題型:單選題
如圖,已知直線a、b被直線c所截,那么∠1的同位角是( )
![]()
A. ∠2 B. ∠3 C. ∠4 D. ∠5
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com