分析 (1)過E作EG∥BC交DC于F,交AB于點G,如圖,由EF∥PC,可證明△DEF∽△DPC,利用相似比可得DF=$\frac{1}{2}$DC=6,EF=$\frac{1}{2}$PC=3,則EG=GF+EF=15,然后根據平行線分線段成比例,由FM∥GN得到$\frac{EM}{EN}$=$\frac{EF}{EG}$=$\frac{1}{5}$;
(2)作MH∥BC交AB于點H,如圖2,則MH=CB=CD,先證明∠1=∠2,然后根據“ASA”可證明△DPC≌△MNH,從而得到DP=MN.
解答 (1)解:過E作EG∥BC交DC于F,交AB于點G,如圖,
∵NE垂直平分DP,
∴DE=EP,
∵EF∥PC,
∴△DEF∽△DPC,![]()
∴$\frac{DF}{DC}$=$\frac{EF}{PC}$=$\frac{DE}{DP}$=$\frac{1}{2}$
∴DF=$\frac{1}{2}$DC=6,EF=$\frac{1}{2}$PC=3,
∴EG=GF+EF=12+3=15,
∵FM∥GN,
∴$\frac{EM}{EN}$=$\frac{EF}{EG}$=$\frac{3}{15}$=$\frac{1}{5}$;
(2)結論正確.證明如下:
作MH∥BC交AB于點H,如圖2,則MH=CB=CD,
∵NE⊥PD,
∴∠MED=90°,
∴∠2+∠DME=90°,
∵∠1+∠DME=90°,
∴∠1=∠2,
在△DPC和△MNH中,
$\left\{\begin{array}{l}{∠2=∠1}\\{DC=MH}\\{∠DCP=∠MHN}\end{array}\right.$,
∴△DPC≌△MNH,
∴DP=MN.
點評 本題考查了相似三角形的判定與性質:在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.也考查了正方形的性質和全等三角形的判定與性質.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com