分析 連接OC,OB,OA,OD,易證S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,所以S四邊形AEOH+S四邊形CGOF=S四邊形DHOG+S四邊形BFOE,所以可以求出S四邊形DHOG.
解答
解:連接OC,OB,OA,OD,
∵E、F、G、H依次是各邊中點(diǎn),
∴△AOE和△BOE等底等高,
∴S△OAE=S△OBE,
同理可證,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,
∴S四邊形AEOH+S四邊形CGOF=S四邊形DHOG+S四邊形BFOE,
∵S四邊形AEOH=5,S四邊形BFOE=6,S四邊形CGOF=7,
∴5+7=6+S四邊形DHOG,
解得:S四邊形DHOG=6.
點(diǎn)評 本題考查了中點(diǎn)四邊形、三角形的面積.解決本題的關(guān)鍵將各個四邊形劃分,充分利用給出的中點(diǎn)這個條件,證得三角形的面積相等,進(jìn)而證得結(jié)論.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 非正數(shù) | B. | 非負(fù)數(shù) | C. | 負(fù)數(shù) | D. | 不為零的數(shù) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com