| A. | 120° | B. | 100° | C. | 60° | D. | 30° |
分析 連接AC,根據(jù)菱形的性質(zhì)得出AC⊥BD,根據(jù)折疊得出EF⊥AC,EF平分AO,得出EF∥BD,得出EF為△ABD的中位線,根據(jù)三角形中位線定理求出BD的長,進(jìn)而可得到BO的長,由勾股定理可求出AO的長,則∠ABO可求出,繼而∠BAO的度數(shù)也可求出,再由菱形的性質(zhì)可得∠A=2∠BAO.
解答 解:
連接AC,
∵四邊形ABCD是菱形,![]()
∴AC⊥BD,
∵A沿EF折疊與O重合,
∴EF⊥AC,EF平分AO,
∵AC⊥BD,
∴EF∥BD,
∴E、F分別為AB、AD的中點(diǎn),
∴EF為△ABD的中位線,
∴EF=BD,
∴BD=2EF=4$\sqrt{3}$,
∴BO=2$\sqrt{3}$,
∴AO=$\sqrt{A{B}^{2}-B{O}^{2}}$=2,
∴AO=$\frac{1}{2}$AB,
∴∠ABO=30°,
∴∠BAO=60°,
∴∠BAD=120°.
故選A.
點(diǎn)評(píng) 本題考查了折疊的性質(zhì)、菱形的性質(zhì)、三角形中位線定理以及勾股定理的運(yùn)用;熟練掌握菱形的性質(zhì)和翻折變換的性質(zhì),并能進(jìn)行推理論證與計(jì)算是解決問題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com