分析 (1)構(gòu)造輔助線后證明△HGE≌△CED,利用對應(yīng)邊相等求證四邊形GHBF是矩形后,利用等量代換即可求出FG=CE,F(xiàn)G∥CE;
(2)構(gòu)造輔助線后證明△HGE≌△CED,利用對應(yīng)邊相等求證四邊形GHBF是矩形后,利用等量代換即可求出FG=CE,F(xiàn)G∥CE;
(3)證明△CBF≌△DCE,即可證明四邊形CEGF是平行四邊形,即可得出結(jié)論.
解答 解:
(1)FG=CE,F(xiàn)G∥CE;理由如下:
過點(diǎn)G作GH⊥CB的延長線于點(diǎn)H,如圖1所示:
則GH∥BF,∠GHE=90°,
∵EG⊥DE,
∴∠GEH+∠DEC=90°,
∵∠GEH+∠HGE=90°,
∴∠DEC=∠HGE,
在△HGE與△CED中,$\left\{\begin{array}{l}{∠GHE=∠DCE}&{\;}\\{∠HGE=∠DEC}&{\;}\\{EG=DE}&{\;}\end{array}\right.$,
∴△HGE≌△CED(AAS),
∴GH=CE,HE=CD,
∵CE=BF,
∴GH=BF,
∵GH∥BF,
∴四邊形GHBF是矩形,
∴GF=BH,F(xiàn)G∥CH
∴FG∥CE,
∵四邊形ABCD是正方形,
∴CD=BC,
∴HE=BC,
∴HE+EB=BC+EB,![]()
∴BH=EC,
∴FG=EC;
故答案為:FG=CE,F(xiàn)G∥CE;
(2)FG=CE,F(xiàn)G∥CE仍然成立;理由如下:
過點(diǎn)G作GH⊥CB的延長線于點(diǎn)H,如圖2所示:
∵EG⊥DE,
∴∠GEH+∠DEC=90°,
∵∠GEH+∠HGE=90°,
∴∠DEC=∠HGE,
在△HGE與△CED中,$\left\{\begin{array}{l}{∠GHE=∠DCE}&{\;}\\{∠HGE=∠DEC}&{\;}\\{EG=DE}&{\;}\end{array}\right.$,
∴△HGE≌△CED(AAS),
∴GH=CE,HE=CD,
∵CE=BF,∴GH=BF,
∵GH∥BF,
∴四邊形GHBF是矩形,
∴GF=BH,F(xiàn)G∥CH
∴FG∥CE,
∵四邊形ABCD是正方形,
∴CD=BC,
∴HE=BC,
∴HE+EB=BC+EB,
∴BH=EC,
∴FG=EC;
(3)FG=CE,F(xiàn)G∥CE仍然成立.理由如下:
∵四邊形ABCD是正方形,
∴BC=CD,∠FBC=∠ECD=90°,
在△CBF與△DCE中,$\left\{\begin{array}{l}{BF=CE}&{\;}\\{∠FBC=∠ECD}&{\;}\\{BC=DC}&{\;}\end{array}\right.$,
∴△CBF≌△DCE(SAS),
∴∠BCF=∠CDE,CF=DE,
∵EG=DE,∴CF=EG,
∵DE⊥EG
∴∠DEC+∠CEG=90°
∵∠CDE+∠DEC=90°
∴∠CDE=∠CEG,
∴∠BCF=∠CEG,
∴CF∥EG,
∴四邊形CEGF平行四邊形,
∴FG∥CE,F(xiàn)G=CE.
點(diǎn)評 本題是四邊形綜合題,考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、平行四邊形的判定與性質(zhì)、矩形的判定與性質(zhì)等知識.本題綜合性強(qiáng),有一定難度,解題的關(guān)鍵是利用全等三角形的對應(yīng)邊相等進(jìn)行線段的等量代換,從而求證出平行四邊形.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | a<-2 | B. | b>-1 | C. | -a<-b | D. | a>|b| |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | x=$\frac{1}{2}$ | B. | x=$-\frac{1}{2}$ | C. | x=$\frac{1}{3}$ | D. | x=-$\frac{1}{3}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com