| A. | ①② | B. | ①③ | C. | ②③ | D. | ①②③ |
分析 由菱形ABCD中,AB=AC,易證得△ABC是等邊三角形,則可得∠B=∠EAC=60°,由SAS即可證得△ABF≌△CAE;則可得∠BAF=∠ACE,利用三角形外角的性質(zhì),即可求得∠AHC=120°;在HD上截取HK=AH,連接AK,易得點(diǎn)A,H,C,D四點(diǎn)共圓,則可證得△AHK是等邊三角形,然后由AAS即可證得△AKD≌△AHC,則可證得AH+CH=DH.
解答 解:∵四邊形ABCD是菱形,
∴AB=BC,
∵AB=AC,
∴AB=BC=AC,
即△ABC是等邊三角形,
同理:△ADC是等邊三角形
∴∠B=∠EAC=60°,
在△ABF和△CAE中,
$\left\{\begin{array}{l}{BF=AE}\\{∠B=∠EAC}\\{BC=AC}\end{array}\right.$,
∴△ABF≌△CAE(SAS);
故①正確;
∴∠BAF=∠ACE,
∵∠AEH=∠B+∠BCE,
∴∠AHC=∠BAF+∠AEH=∠BAF+∠B+∠BCE=∠B+∠ACE+∠BCE=∠B+∠ACB=60°+60°=120°;![]()
故②正確;
在HD上截取HK=AH,連接AK,
∵∠AHC+∠ADC=120°+60°=180°,
∴點(diǎn)A,H,C,D四點(diǎn)共圓,
∴∠AHD=∠ACD=60°,∠ACH=∠ADH,
∴△AHK是等邊三角形,
∴AK=AH,∠AKH=60°,
∴∠AKD=∠AHC=120°,
在△AKD和△AHC中,
$\left\{\begin{array}{l}{∠AKD=∠AHC}\\{∠ADH=∠ACH}\\{AD=AC}\end{array}\right.$,
∴△AKD≌△AHC(AAS),
∴CH=DK,
∴DH=HK+DK=AH+CH;
故③正確;
故選D.
點(diǎn)評(píng) 此題考查了菱形的性質(zhì)、等邊三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì).此題難度較大,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2個(gè) | B. | 3個(gè) | C. | 4個(gè) | D. | 1個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | BE=DF | B. | AG=GH=HC | C. | EG=$\frac{1}{2}$BG | D. | S△ABE=2S△AGE |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com