分析 連接BD,與AC的交點(diǎn)即為使△PBE的周長最小的點(diǎn)P;由菱形的性質(zhì)得出∠BPC=90°,由直角三角形斜邊上的中線性質(zhì)得出PE=BE,證明△PBE是等邊三角形,得出PB=BE=PE=1,即可得出結(jié)果.
解答 解:連結(jié)DE.
∵BE的長度固定,
∴要使△PBE的周長最小只需要PB+PE的長度最小即可,
∵四邊形ABCD是菱形,
∴AC與BD互相垂直平分,
∴P′D=P′B,
∴PB+PE的最小長度為DE的長,
∵菱形ABCD的邊長為2,E為BC的中點(diǎn),∠DAB=60°,![]()
∴△BCD是等邊三角形,
又∵菱形ABCD的邊長為2,
∴BD=2,BE=1,DE=$\sqrt{3}$,
∴△PBE的最小周長=DE+BE=$\sqrt{3}$+1,
故答案為:$\sqrt{3}$+1.
點(diǎn)評 本題考查了菱形的性質(zhì)、軸對稱以及最短路線問題、直角三角形斜邊上的中線性質(zhì);熟練掌握菱形的性質(zhì),并能進(jìn)行推理計算是解決問題的關(guān)鍵.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0.2×1011 | B. | 2×1010 | C. | 200×108 | D. | 2×109 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com