分析 (1)只要證明△ADE是等腰直角三角形即可解決問題;
(2)結(jié)論:AD⊥MC.首先證明△DFC≌△AFM(AAS),推出CF=MF,再證明DE∥CM,由AD⊥DE,即可推出AD⊥CM.
解答 (1)證明:
∵AD⊥DE,AD=DE,
∴△ADE是等腰直角三角形,
∵AF=EF,
∴DF⊥AE,
即MF⊥AC.
(2)解:結(jié)論:AD⊥MC.
理由:∵△ADE是等腰直角三角形,F(xiàn)是AE中點(diǎn),
∴DF⊥AE,DF=AF=EF,
又∵∠ABC=90°,
∠DCF,∠AMF都與∠MAC互余,
∴∠DCF=∠AMF,
在△DFC和△AFM中,
$\left\{\begin{array}{l}{∠DCF=∠AMF}\\{∠CFD=∠MFA}\\{DF=AF}\end{array}\right.$,![]()
∴△DFC≌△AFM(AAS),
∴CF=MF,∵∠MFC=90°
∴∠FCM=∠AED=45°,
∴DE∥CM,∵⊥DE,
∴AD⊥CM.
點(diǎn)評(píng) 本題考查全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考?碱}型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | ① | B. | ② | C. | ③ | D. | ④ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com