分析 (1)只要證明∠CDE=∠ECD,∠CDE=∠AFC即可解決問(wèn)題.
(2)只要證明CG=BD,CE=EG,DE=EB即可.
解答 (1)證明:∵∠BCD=90°,DE=EB,
∴EC=ED=EB,
∴∠EDC=∠ECD,
∵∠CED+∠CDE+∠DCE=180°,∠A+∠DCE+∠AFC=180°,
又∵∠CED=∠A,
∴∠CDE=∠AFC,
∴∠AFC=∠ACF,
∴AC=AF.
(2)解:圖象如圖所示.![]()
∵∠CED=∠ABG,∠CED=∠A,
∴∠A=∠ABG,
∴AC∥BG,
∴∠ECD=∠BGE,
在△CED和△GEB中,
$\left\{\begin{array}{l}{∠DCE=∠BGE}\\{∠CED=∠GEB}\\{DE=EB}\end{array}\right.$,
∴△CED≌△GEB,
∴CE=EG,
∴CE=DE=EB,
∴CG=BD,CE=EG,DE=EB,
∴四邊形CDGB是平行四邊形,∵BD=CG,
∴四邊形CDGB是矩形.
點(diǎn)評(píng) 本題考查矩形的性質(zhì)、全等三角形的判定和性質(zhì)、直角三角形斜邊中線的性質(zhì)、等腰三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,正確尋找全等三角形解決問(wèn)題,屬于中考?碱}型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com