分析 (1)作DF∥BC交AC于F,由平行線的性質(zhì)得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,證明△ABC是等邊三角形,得出∠ABC=∠ACB=60°,證出△ADF是等邊三角形,∠DFC=120°,得出AD=DF,由已知條件得出∠FDC=∠DEC,ED=CD,由AAS證明△DBE≌△CFD,得出EB=DF,即可得出結(jié)論;
(2)作DF∥BC交AC的延長(zhǎng)線于F,同(1)證出△DBE≌△CFD,得出EB=DF,即可得出結(jié)論;
(3)作DF∥BC交CA的延長(zhǎng)線于F,同(1)證出△DBE≌△CFD,得出EB=DF,再利用含30°的直角三角形的性質(zhì)即可得出結(jié)論.
解答 (1)證明:作DF∥BC交AC于F,如圖1所示:
則∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,
∵△ABC是等腰三角形,∠A=60°,
∴△ABC是等邊三角形,
∴∠ABC=∠ACB=60°,
∴∠DBE=120°,∠ADF=∠AFD=60°=∠A,
∴△ADF是等邊三角形,∠DFC=120°,
∴AD=DF,
∵∠DEC=∠DCE,
∴∠FDC=∠DEC,ED=CD,
在△DBE和△CFD中,$\left\{\begin{array}{l}{∠DEC=∠FDC}\\{∠DBE=∠DFC=120°}\\{ED=CD}\end{array}\right.$,
∴△DBE≌△CFD(AAS),
∴EB=DF,
∴EB=AD;
(2)解:EB=AB+BD;理由如下:![]()
作DF∥BC交AC的延長(zhǎng)線于F,如圖2所示:
同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,
又∵∠DBE=∠DFC=60°,
∴在△DBE和△CFD中,$\left\{\begin{array}{l}{∠DEC=∠FDC}\\{∠DBE=∠DFC}\\{ED=CD}\end{array}\right.$,
∴△DBE≌△CFD(AAS),
∴EB=DF,
∴EB=AD,
∴EB=AB+BD;
(3)解:$\sqrt{3}$BE=3DB-3AB.
理由:作DF∥BC交CA的延長(zhǎng)線于F,如圖3所示,![]()
則∠ADF=∠ABC,∠AFD=∠ACB,∠FDC+∠DCE=180°,
∵△ABC是等腰三角形,
∴∠ABC=∠ACB,
∴∠ADF=∠AFD=∠ABC,
∵∠DEC=∠DCE,
∴DE=DC,∠FDC+∠DEC=180°,
∵∠DEC+∠DEB=180°,
∴∠FDC=∠DEB,
在△DBE和△CFD中,$\left\{\begin{array}{l}{∠DBE=∠CFD}\\{∠BED=∠FDC}\\{DE=DC}\end{array}\right.$,
∴△DBE≌△CFD(AAS),
∴EB=DF,DB=CF,
∵CF=AC+AF=AB+AF,
∴DB=AB+AF,
過(guò)點(diǎn)A作AG⊥DF于G,
∵AF=AD,
∴DF=2FG,
在Rt△AFG中,∠AFG=90°-∠FAG=90°-$\frac{1}{2}$∠BAC=30°,
∴FG=$\frac{\sqrt{3}}{2}$AF,
∴EB=DF=2FG=$\sqrt{3}$AF,
∴AF=$\frac{\sqrt{3}}{3}$EB
∴DB=AB+$\frac{\sqrt{3}}{3}$BE,
即:$\sqrt{3}$BE=3DB-3AB.
點(diǎn)評(píng) 本題考查了等邊三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、平行線的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問(wèn)題,屬于中考常考題型.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1,2,3,4 | B. | 6,5,10,15 | C. | 3,2,6,4 | D. | 15,3,4,10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com