分析 根據(jù)平移和翻折的性質(zhì)得到△MPN是等腰直角三角形,于是得到當(dāng)PM最小時(shí),對(duì)角線MN最小,即AE取最小值,當(dāng)AE⊥BD時(shí),AE取最小值,過D作DF⊥AB于F,根據(jù)平行四邊形的面積得到DF=2,根據(jù)等腰直角三角形的性質(zhì)得到AF=DF,由勾股定理得到BD=$\sqrt{D{F}^{2}+B{F}^{2}}$,根據(jù)三角形的面積得到AE的長(zhǎng),即可得到結(jié)論.
解答 解:∵△ABE≌△CDF≌△PMQ,
∴AE=DF=PM,∠EAB=∠FDC=∠MPQ,
∵△ADE≌△BCG≌△PNR,
∴AE=BG=PN,∠DAE=∠CBG=∠RPN,
∴PM=PN,
∵四邊形ABCD是平行四邊形,![]()
∴∠DAB=∠DCB=45°,
∴∠MPN=90°,
∴△MPN是等腰直角三角形,
當(dāng)PM最小時(shí),對(duì)角線MN最小,即AE取最小值,
∴當(dāng)AE⊥BD時(shí),AE取最小值,
過D作DF⊥AB于F,
∵平行四邊形ABCD的面積為28,AB=7,
∴DF=4,
∵∠DAB=45°,
∴AF=DF=4,
∴BF=3,
∴BD=$\sqrt{D{F}^{2}+B{F}^{2}}$=5,
∴AE=$\frac{DF•AB}{BD}$=$\frac{28}{5}$,
∴MN=$\sqrt{2}$AE=$\frac{28}{5}\sqrt{2}$,
故答案為:$\frac{28}{5}\sqrt{2}$.
點(diǎn)評(píng) 本題考查了平移的性質(zhì),翻折的性質(zhì),勾股定理,平行四邊形的性質(zhì),正確的識(shí)別圖形是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | a=2b | B. | a=3b | C. | a=4b | D. | a=b |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com